matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraFormel für form. Potenzreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - Formel für form. Potenzreihe
Formel für form. Potenzreihe < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formel für form. Potenzreihe: Verständnis eines Verfahrens
Status: (Frage) beantwortet Status 
Datum: 12:13 So 03.07.2011
Autor: extasic

Aufgabe
Sei [mm] $\sum_{n \geq 0} a_n x^n [/mm] = [mm] \frac{x-2x^3}{4x^4 - 5x^2 + 1}$ [/mm] gegeben. Zu bestimmen ist eine konkrete Formel für [mm] $a_n$. [/mm]

Dabei soll das Folgende verwendet werden:

Für eine Folge $a = [mm] (a_0 [/mm] , [mm] a_1, \ldots)$ [/mm] von komplexen
Zahlen und ein $d$-Tupel [mm] $(\alpha_1, \ldots, \alpha_d) \in \CC^d$ [/mm]
mit [mm] $\alpha_d \neq [/mm] 0$ sind äquivalent.

i) [mm] $$f_a(x) [/mm] = [mm] \displaystyle{\sum_{n \geq 0} a_n x^n} [/mm] = [mm] \frac{P(x)}{Q(x)}$$ [/mm] mit $$Q(x) = 1 + [mm] \alpha_1 [/mm] t + [mm] \cdots [/mm] + [mm] \alpha_dt^d$$ [/mm]
und einem Polynom $P(x)$ vom Grad $< d$.
ii)
[mm] $$a_{n+d} [/mm] + [mm] \alpha_1 a_{n+d-1} [/mm] + [mm] \cdots [/mm] + [mm] \alpha_d a_n [/mm] = 0 [mm] \mbox{~für~} [/mm] n [mm] \geq [/mm] 0.$$
iii) Für [mm]n \geq 0[/mm] gilt [mm] $$a_n [/mm] = [mm] \displaystyle{\sum_{i=}^k P_i(n) \gamma_i^n}$$ [/mm] mit $$1 + [mm] \alpha_1 [/mm] x + [mm] \cdots [/mm] + [mm] \alpha_dx^d [/mm] =
[mm] \displaystyle{\prod_{i=1}^k (1- \gamma_ix)^{d_i}}$$, [/mm] so dass [mm]\gamma_i \neq \gamma_j[/mm], [mm]1\leq i < j \leq k[/mm]
und [mm]P_i(t)[/mm] ein Polynom vom Grad [mm]< d_i[/mm].

Hallo!

Mir geht es darum das Verfahren zu verstehen, wie aus einer formalen Potenzreihe (wie oben gegeben) eine konkrete Formel für ein [mm]a_n[/mm] durch das Splitten in P(x) und Q(x) gewonnen werden kann. Dies ist ein Extrakt einer Aufgabe.

Wie gehe ich weiter vor? Die Definition oben habe ich in eine Polynomform für Zähler und Nenner gebracht, so dass deg(Zähler) < deg(Nenner). Sind das dann direkt P und Q, oder muss ich noch mehr tun? Wie gewinne ich nun ein konkretes Ergebnis? (Als Tipp wurde "Nullstellen" genannt, aber was genau das damit zu tun hat weiß ich nicht).

Vielen Dank im Voraus!

        
Bezug
Formel für form. Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 So 03.07.2011
Autor: MathePower

Hallo extasic,

> Sei [mm]\sum_{n \geq 0} a_n x^n = \frac{x-2x^3}{4x^4 - 5x^2 + 1}[/mm]
> gegeben. Zu bestimmen ist eine konkrete Formel für [mm]a_n[/mm].
>  
> Dabei soll das Folgende verwendet werden:
>  
> Für eine Folge [mm]a = (a_0 , a_1, \ldots)[/mm] von komplexen
>  Zahlen und ein [mm]d[/mm]-Tupel [mm](\alpha_1, \ldots, \alpha_d) \in \CC^d[/mm]
> mit [mm]\alpha_d \neq 0[/mm] sind äquivalent.
>  
> i) [mm]f_a(x) = \displaystyle{\sum_{n \geq 0} a_n x^n} = \frac{P(x)}{Q(x)}[/mm]
> mit [mm]Q(x) = 1 + \alpha_1 t + \cdots + \alpha_dt^d[/mm]
>  und einem
> Polynom [mm]P(x)[/mm] vom Grad [mm]< d[/mm].
> ii)
>  [mm]a_{n+d} + \alpha_1 a_{n+d-1} + \cdots + \alpha_d a_n = 0 \mbox{~für~} n \geq 0.[/mm]
>  
> iii) Für [mm]n \geq 0[/mm] gilt[mm][/mm][mm] a_n[/mm] = [mm]\displaystyle{\sum_{i=}^k P_i(n) \gamma_i^n}[/mm][mm][/mm]
> mit [mm][/mm]1 + [mm]\alpha_1[/mm] x + [mm]\cdots[/mm] + [mm]\alpha_dx^d[/mm] =
>  [mm]\displaystyle{\prod_{i=1}^k (1- \gamma_ix)^{d_i}}[/mm] [mm][/mm], so
> dass [mm]\gamma_i \neq \gamma_j[/mm], [mm]1\leq i < j \leq k[/mm]
>  und [mm]P_i(t)[/mm]
> ein Polynom vom Grad [mm]< d_i[/mm].
>  Hallo!
>  
> Mir geht es darum das Verfahren zu verstehen, wie aus einer
> formalen Potenzreihe (wie oben gegeben) eine konkrete
> Formel für ein [mm]a_n[/mm] durch das Splitten in P(x) und Q(x)
> gewonnen werden kann. Dies ist ein Extrakt einer Aufgabe.
>  
> Wie gehe ich weiter vor? Die Definition oben habe ich in
> eine Polynomform für Zähler und Nenner gebracht, so dass
> deg(Zähler) < deg(Nenner). Sind das dann direkt P und Q,
> oder muss ich noch mehr tun? Wie gewinne ich nun ein
> konkretes Ergebnis? (Als Tipp wurde "Nullstellen" genannt,
> aber was genau das damit zu tun hat weiß ich nicht).


Das ist so gemeint, daß

[mm]\frac{x-2x^3}{4x^4 - 5x^2 + 1}[/mm]

in Partialbrüche zerlegt werden soll.


>  
> Vielen Dank im Voraus!


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]