matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastik-SonstigesFormel für Zahlen bis X
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stochastik-Sonstiges" - Formel für Zahlen bis X
Formel für Zahlen bis X < Sonstiges < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formel für Zahlen bis X: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:06 Sa 31.05.2008
Autor: rabilein1

Aufgabe
In einer Los-Trommel sind Lose mit fortlaufenden Zahlen beginnend mit NULL. Alle Zahlen haben gleich viele Stellen n, wobei die vorderen Stellen mit Nullen aufgefüllt werden
(Beispiel: für n=3 beginnt die Serie mit 000, 001, 002 etc.)

Man gewinnt, wenn die Zahl, die man aus der Trommel zieht, mindestens eine NULL enthält.
(Beispiel: 003=Gewinn / 106=Gewinn / 214=Niete)

Aufgabe: Es ist eine Formel zu entwickeln, mit der man - wenigstens annäherungsweise - berechnen kann, wie viele Lose die Trommel enthalten muss, damit man - in Abhängigkeit von n - mit einer Wahrscheinlichkeit p einen Gewinn erzielt.

  

Meine Überlegung ist dabei folgende:

In den letzten Stellen (also mit Ausnahme der ersten Stelle), ist die Wahrscheinlichkeit auf eine NULL jeweils 0.1.
Somit ist die Wahrscheinlichkeit bei einer n-Stelligen Zahl, dass die letzten Stellen keine NULL haben:

[mm] 0.9^{(n-1)} [/mm]

Das Problem ist eigentlich nur die erste Stelle. Die hat natürlich für die ersten [mm] 10^{(n-1)} [/mm] Zahlen immer eine Null.
(Beispiel: Bei einer 3-stellligen Zahl beginnen alle Zahlen von 000 bis 099 mit NULL)

Ich habe obige Erkenntnisse in einer Formel verarbeitet, umgewandelt, etc, und habe dann im Endeffekt eine Näherungsformel rausgekriegt, die da lautet:

ZAHL = [mm] \bruch{9^{(n-1)}}{0.9^{(n-1)}-1+p} [/mm]  


Ein "Zählen" mit einigen konkreten Beispielen ergab, dass das in einigen Fällen exakt hinkam, in anderen so einigermaßen, in wiederum anderen Fällen aber doch große Abweichungen auftraten.

Mit anderen Worten: Die Formel ist recht ungenau, und nicht immer anwendbar.

Hätte jemand da eine bessere Idee, wie man das löst?

        
Bezug
Formel für Zahlen bis X: Beispielaufgabe
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:52 So 01.06.2008
Autor: rabilein1

Lasst uns ein willkürliches Beispiel nehmen:
n=2 und p=0.3333 - also: zweistellige Zahlen ud jede dritte hat Zahl eine NULL

Die Zahlen mit den NULLEN sind dann:
00, 01, 02 ... 09,10, ... 20 ...30 ... (die letzte Zahl ist dann 38)

Es gibt also 39 Zahlen, von denen jede dritte eine NULL hat.

Nach meiner Formel wäre die gesuchte Zahl:

[mm] \bruch{9^{(2-1)}}{0.9^{(2-1)}-1+0.3333} [/mm] = 38.57

Hey, das ist ja perfekt, aufgerundet also 39 Zahlen, aber leider klappt das nicht bei allen Beispielen so gut.


Der Leser mag hier eigene Beispiel wählen, und die dann durchrechnen und sehen, welche für und welche gegen die Formel sprechen.



Bezug
        
Bezug
Formel für Zahlen bis X: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mo 02.06.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]