matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteFolgengrenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Grenzwerte" - Folgengrenzwert
Folgengrenzwert < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgengrenzwert: Hilfe, Tipp
Status: (Frage) beantwortet Status 
Datum: 17:23 So 20.11.2011
Autor: Nicky-01

Aufgabe
1) [mm] a_{i}= \bruch{2}{4i^2-1} [/mm] , [mm] i\in\IN [/mm]
2) [mm] a_{i}=\bruch {i-4}{3i^2-24i+48} [/mm] , [mm] i\in\IN_{0} [/mm]

Hallo,
bei den Aufgaben soll ich begründet angeben, ob die Folge konvergiert, im Falle der Konvergenz durch berechnung des GW ...

habe bei der 1. Aufgabe 0 raus
und bei der 2. Aufgabe [mm] \bruch{1}{24} [/mm]

wollte nur fragen, ob dies stimmt, und wenn ja, ist dies doch schon die begründet, dass beide konvergieren, wegen dem Rechenweg ...
bei der 2. Aufgabe bin ich mir vorallem sehr unsicher, ob da nicht vllt doch 0 rauskommt ...



        
Bezug
Folgengrenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 So 20.11.2011
Autor: MathePower

Hallo Nicky-01,

> 1) [mm]a_{i}= \bruch{2}{4i^2-1}[/mm] , [mm]i\in\IN[/mm]
>  2) [mm]a_{i}=\bruch {i-4}{3i^2-24i+48}[/mm] , [mm]i\in\IN_{0}[/mm]
>  Hallo,
>  bei den Aufgaben soll ich begründet angeben, ob die Folge
> konvergiert, im Falle der Konvergenz durch berechnung des
> GW ...
>  
> habe bei der 1. Aufgabe 0 raus
>  und bei der 2. Aufgabe [mm]\bruch{1}{24}[/mm]
>
> wollte nur fragen, ob dies stimmt, und wenn ja, ist dies
> doch schon die begründet, dass beide konvergieren, wegen
> dem Rechenweg ...


Das Ergebnis des GW bei der 1. Aufgabe stimmt.


>  bei der 2. Aufgabe bin ich mir vorallem sehr unsicher, ob
> da nicht vllt doch 0 rauskommt ...

>


Dann poste hierzu Deine bisherigen Rechenschritte.

  
Gruss
MathePower  

Bezug
                
Bezug
Folgengrenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:56 So 20.11.2011
Autor: Nicky-01

also da habe ich  
[mm] a_{i}=\bruch {i-4}{3i^2-24i+48} [/mm] = [mm] \bruch{i(1-\bruch{4}{i})}{i(3i-24+\bruch{48}{i})}= \limes_{n\rightarrow\infty}\bruch{1-\bruch{4}{i}}{3i-24+\bruch{48}{i}}=\bruch{1}{24} [/mm]
aber ich weiß nicht genau, ob man da nicht vllt [mm] i^2 [/mm] ausklammern muss,
da uns gesagt wurde, man klammert den höchsten Exponenten im Nenner aus ... das wäre dann ja [mm] i^2 [/mm] ...
dann würde ich es nämlich so machen:
[mm] a_{i}=\bruch {i-4}{3i^2-24i+48}=\bruch{i^2(\bruch{1}{i}-\bruch{4}{i^2})}{i^2(3-\bruch{24}{i}+\bruch{48}{i^2})}=\limes_{n\rightarrow\infty}\bruch{\bruch{1}{i}-\bruch{4}{i^2}}{3-\burch{24}{i}+\bruch{48}{i^2}}=0 [/mm]

Bezug
                        
Bezug
Folgengrenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 So 20.11.2011
Autor: MathePower

Hallo Nicky-01,

> also da habe ich  
> [mm]a_{i}=\bruch {i-4}{3i^2-24i+48}[/mm] =
> [mm]\bruch{i(1-\bruch{4}{i})}{i(3i-24+\bruch{48}{i})}= \limes_{n\rightarrow\infty}\bruch{1-\bruch{4}{i}}{3i-24+\bruch{48}{i}}=\bruch{1}{24}[/mm]
>  
> aber ich weiß nicht genau, ob man da nicht vllt [mm]i^2[/mm]
> ausklammern muss,
>  da uns gesagt wurde, man klammert den höchsten Exponenten
> im Nenner aus ... das wäre dann ja [mm]i^2[/mm] ...
>  dann würde ich es nämlich so machen:
>  [mm]a_{i}=\bruch {i-4}{3i^2-24i+48}=\bruch{i^2(\bruch{1}{i}-\bruch{4}{i^2})}{i^2(3-\bruch{24}{i}+\bruch{48}{i^2})}=\limes_{n\rightarrow\infty}\bruch{\bruch{1}{i}-\bruch{4}{i^2}}{3-\burch{24}{i}+\bruch{48}{i^2}}=0[/mm]


So ist es auch richtig. [ok]


Gruss
MathePower  

Bezug
                                
Bezug
Folgengrenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:23 So 20.11.2011
Autor: Nicky-01

welche der beiden denn?
die, wo ich nur i ausgeklammert habe, oder die, wo ich [mm] i^2 [/mm] ausgeklammert habe?

Bezug
                                        
Bezug
Folgengrenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 18:43 So 20.11.2011
Autor: MathePower

Hallo Nicky-01,

> welche der beiden denn?
>  die, wo ich nur i ausgeklammert habe, oder die, wo ich [mm]i^2[/mm]
> ausgeklammert habe?


Das mit dem [mm]i^{2}[/mm] ausklammern.


Gruss
MathePower

Bezug
                                                
Bezug
Folgengrenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:55 So 20.11.2011
Autor: Nicky-01

ok, also ist der GW 0 ...
danke für die Hilfe!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]