matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesFolgen und Reihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Sonstiges" - Folgen und Reihen
Folgen und Reihen < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen und Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:43 Di 25.10.2005
Autor: kehlkopf

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, ich habe hier eine geometrische Folge:
wo bei ich weiß das b3 = 4, b6 = 32 und ich soll b1, q und s6 bestimmen.

Ich habe hier einen Ansatz
b6 = b3 * [mm] q^{n-1} [/mm]
32 = 4 * [mm] q^{3} [/mm]
q =   [mm] \wurzel[3]{8} [/mm]
q = 2

Ich weiß dass das die richtige lösung sein muss, aber ich verstehe nicht warum n=4, meiner meinung nach sollte n=6 sein. Aber dann stimmt das Ergebnis nicht mehr.

        
Bezug
Folgen und Reihen: Korrekturen
Status: (Antwort) fertig Status 
Datum: 13:59 Di 25.10.2005
Autor: Roadrunner

Hallo kehlkopf,

[willkommenmr] !!


Da hast Du für $q_$ nur zufällig das richtige Ergebnis erhalten, denn Dein Rechenweg ist leider falsch.


Es gilt ja allgemein für die geometrische Folge:    [mm] $b_n [/mm] \ = \ [mm] b_1 [/mm] * [mm] q^{n-1}$ [/mm]


Damit wird nun für unsere beiden gegebenen Glieder:

1.   [mm] $b_3 [/mm] \ = \ [mm] b_1 [/mm] * [mm] q^{3-1} [/mm] \ = \ [mm] b_1 [/mm] * [mm] q^2 [/mm] \ = \ 4$

2.   [mm] $b_6 [/mm] \ = \ [mm] b_1 [/mm] * [mm] q^{6-1} [/mm] \ = \ [mm] b_1 [/mm] * [mm] q^5 [/mm] \ = \ 32$


Wenn du nun diese beiden Gleichungen miteinander dividierst, erhältst Du:

[mm] $\bruch{b_6}{b_3} [/mm] \ = \ [mm] \bruch{b_1 * q^5}{b_1 * q^2} [/mm] \ = \ [mm] \bruch{32}{4}$ $\gdw$ $q^{5-2} [/mm] \ = \ [mm] q^3 [/mm] \ = \ 8$   usw.


Deine Frage nach dem $n \ = \ 4$ verstehe ich jetzt nicht. Aber mit dem Ergebnis von $q \ = \ 2$ gehen wir nun wieder in eine der beiden Gleichungen:

[mm] $b_3 [/mm] \ = \ [mm] b_1 [/mm] * [mm] 2^{3-1} [/mm] \ = \ [mm] b_1 [/mm] * [mm] 2^2 [/mm] \ = \ [mm] 4*b_1 [/mm] \ = \ 4$

Daraus erhältst Du nun [mm] $b_1$ [/mm] und kannst auch [mm] $s_6$ [/mm] mit der Summenformel ermitteln.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]