matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFolgen (unabh. Darstellung)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Folgen (unabh. Darstellung)
Folgen (unabh. Darstellung) < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen (unabh. Darstellung): Generell
Status: (Frage) beantwortet Status 
Datum: 12:46 Sa 02.09.2006
Autor: FlorianJ

Hi mal wieder  :-),

da es ja letzte mal nicht für die Prüfung reichte,
pauke ich mal wieder  für Mathe I.

Nun habe ich ein neues Buch, doch auch in dem
wie in dem alten steht keine Vorgehensweise,
wie man die unabhängige Darstellung für Folgen,
also eine Vorschrift, berechnet.
Gibt es so etwas überhaupt, oder muss man da echt ein wenig
rumknobeln.
zB folgende aufgabe:

$ [mm] a_0 [/mm] = 0 , [mm] a_1=3 [/mm] , [mm] a_{k+1} [/mm] = [mm] 2a_k [/mm] - [mm] a_{k-1} [/mm] +2 $

als lösung kommt da nun folgendes raus

$ [mm] [/mm] = [mm] (k+1)^{2} [/mm] -1     $

wieso ist klar, nur wie ist die Frage.

Ich habe mir nun zB zuerst die Differenzen angeguckt:
und zwar +3 +5 +7 +9

wäre ja eine differenz von (2k-1) oder (2k+1) hat nur offensichtlich nicht viel mit der lösung gemein.    

vielleicht weiß ja einer was ;)


Danke für eure Mühe.

Bis denn, Flo


Habe die Frage nur hier gestellt.

        
Bezug
Folgen (unabh. Darstellung): Antwort
Status: (Antwort) fertig Status 
Datum: 13:57 Sa 02.09.2006
Autor: Martin243

Hallo,

das hat mit den ungeraden Zahlen als Differenzen sehr wohl was zu tun. Betrachte mal Folgendes:

$1 = [mm] 1^2$ [/mm]
$1 + 3 = [mm] 2^2$ [/mm]
$1 + 3 + 5 = [mm] 3^2$ [/mm]
$1 + 3 + 5 + 7 = [mm] 4^2$ [/mm]

und allgemein:
$1 + 3 + ... + (2k+1) = [mm] (k+1)^2$ [/mm]
bzw.
$1 + 3 + ... + (2k-1) = [mm] k^2$ [/mm]


Jetzt siehst du, dass das quadratische Glied vom Aufaddieren der aufeinanderfolgenden ungeraden Zahlen kommt.


Gruß
Martin


Bezug
                
Bezug
Folgen (unabh. Darstellung): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:07 Sa 02.09.2006
Autor: FlorianJ

jo, klasse! danke! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]