matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieFolgen mit Normen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - Folgen mit Normen
Folgen mit Normen < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen mit Normen: Aufgabenhilfe
Status: (Frage) beantwortet Status 
Datum: 13:50 Sa 20.06.2009
Autor: Ultio

Aufgabe
Zeigen Sie, dass die Normen (Einsnorm) und (Unendlichnorm) bzw. (Supremumsnorm) auf Cc [mm] (\IR^{n} [/mm] , [mm] \IR) [/mm] nicht vergleichbar sind, indem Sie eine Folge [mm] f_{k} \in [/mm] Cc [mm] (\IR^{n} [/mm] , [mm] \IR) [/mm] angeben, die bezüglich der Einsnorm konvergiert aber nicht bezüglich der Unendlichnorm, und umgekehrt.

Hallo, kann mir mal jemand bei dieser Aufgabe bitte helfen. Hab das jetzt mit
[mm] f(k)=\begin{cases} (x^{k}), & { x \in (0,1)} \\ 1, & {x \in (1,2)} \\ ((3-x)^{k}), & {x \in (2,3)} \\ 0, & {sonst}\end{cases} [/mm]

Ausprobiert, komme aber irgendwie zu keinem Ergebnis bisauf, dass diese bezüglich der eins-Norm konvergiert.


Vielen Dank!!!


        
Bezug
Folgen mit Normen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:14 Sa 20.06.2009
Autor: pelzig

Was ist [mm] $Cc(\IR^n,\IR)$? [/mm] Stetig Abbildungen von [mm] \IR^n [/mm] nach [mm] \IR [/mm] mit komapktem Träger? Was ist die Eins Norm auf diesem Raum?

Gruß, Robert

Bezug
                
Bezug
Folgen mit Normen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:47 Sa 20.06.2009
Autor: Ultio

Die Einsnorm ist das Integral des Betrages der Funktion und die Supremumsnorm das Supremum der Funktion...
Gruß

Bezug
        
Bezug
Folgen mit Normen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:04 Sa 20.06.2009
Autor: pelzig

Für n=1 betrachte doch beispielsweise [mm] $f_k:\IR\to\IR$ [/mm] mit [mm] $$f_k(x)=\begin{cases}(1-|x|)^k&\text{falls }|x|\le 1\\0&\text{sonst}\end{cases}$$ [/mm] Dann konvergiert die Folge [mm] $(f_k)\subset C_c(\IR,\IR)$ [/mm] bezüglich der [mm] $L^1$-Norm [/mm] gegen die konstante Nullfunktion, aber nicht bezüglich der Supremumsnorm, denn [mm] $f_k(0)=1$ [/mm] für alle [mm] $k\in\IN$. [/mm]

Gruß, Robert

Bezug
                
Bezug
Folgen mit Normen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:19 So 21.06.2009
Autor: Ultio

Dankeschön,
echt nett.
Gruß
Ultio

Bezug
        
Bezug
Folgen mit Normen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:00 So 21.06.2009
Autor: pelzig

Eine Folge in [mm] $C_c(\IR,\IR)$, [/mm] die gleichmäßig gegen 0 konvergiert, aber nicht bzgl. der [tex]$L^1$[/tex]-Norm: [mm] $$f_k(x):=\begin{cases}\frac{k-|x|}{k^2}&\text{falls }x\in[-k,k]\\0&\text{sonst}\end{cases}$$ [/mm] Es ist [mm] $\|f_k\|_\infty=1/k$ [/mm] und [mm]\int_{\IR}f_k(x)\ dx=2[/mm].

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]