matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisFolgen, Dreieckungleichunng
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Folgen, Dreieckungleichunng
Folgen, Dreieckungleichunng < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen, Dreieckungleichunng: Beweis
Status: (Frage) beantwortet Status 
Datum: 21:22 Do 19.05.2005
Autor: mimi94

Ich habe diese Frage in keinem anderen Forum gestellt.

Hallo!
Also ich habe Probleme bei 2 beweisen.
es gilt K= [mm] \IR [/mm] oder [mm] K=\IC [/mm]
[mm] (a_{n})_{n\in\IN} [/mm] Folge in K, a [mm] \in [/mm] K
[mm] a_{n} \to [/mm] a [mm] \Rightarrow\vmat{ a_{n} }\to\vmat{ a } [/mm]
Als Hinweis wurde uns gegeben, dass die Dreiecksungleichung auch in [mm] K=\IC [/mm] gilt.
Was hat die Dreiecksungleichung den mit diesen Beweis zu tun und wieso gilt dies?
Die Umkehrung gilt nur bei a=0, oder?? also wäre a=1 ein Gegenbeispiel, dass die Umkehrung nicht funktioniert.
und dann sollen wir noch beweisen, dass
[mm] a_{n}\to0 \gdw(\bruch{1}{|a_{n}|}\to\infty [/mm]
Ich find dies so logisch, st ja klar, wenn an immer kleiner wird, weil es gegen Null geht, wird der andere immer größer.
Achso und hier gilt [mm] K^{\*}=K\backslash\{0\} [/mm]
Ich bekomm diesen Beweis nicht hin und was diese Aussage hier drüber genau bedeutet für den Beweis, weiß ich nicht.
Bitte helft mir.
Ich sage schon mal danke für jede Hilfe

        
Bezug
Folgen, Dreieckungleichunng: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Do 19.05.2005
Autor: Max

Hallo mimi,

du müsstest ja zeigen, dass für alle [mm] $\varepsilon>0$ [/mm] immer eine Zhal [mm] $n_0 \in \IN$ [/mm] existiert, so dass für alle [mm] $n>n_0$ [/mm] gilt: [mm] $\left||a_n|-|a|\right|<\varepsilon$. [/mm]

Die Dreiecksungleichung lautet:

[mm] $\left||x|-|y|\right| \le \left|x+y\right| \le [/mm] |x|+|y|$

für alle $x,y [mm] \in \IC$. [/mm]

Mit dieser Ungleichung kannst du den Betrag oben abschätzen und [mm] $a_n \to [/mm] a $ ausnutzen.

Gruß Max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]