Folgen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:27 So 04.05.2008 | Autor: | kushkush |
Aufgabe | Berechne die Summe aller Neunerzahlen zwischen 100 und 10'000. |
Neunerzahlen = Zahlen die man durch 9 ohne Rest teilen kann also:
108,117,126...9999
wie finde ich nun aber die nummer des gliedes 9999 heraus?
herausbekommen hatte ich schon 1111 was ja aber nicht stimmen kann da man die ersten 11 glieder nicht dazuzählen kann...
1100 scheint zu stimmen...
gibt es auch einen Weg über eine Formel um an diese Zahl zu gelangen?
Ich habe diese Frage in keinem anderen Forum gestellt und danke schon im Voraus für jede Antwort.
|
|
|
|
Du hast eine Folge der Form
[mm]a_{n} = 99 + n*9[/mm],
wobei deine Folgenglieder praktisch für [mm]n = 1[/mm] losgehen.
Dann ergibt die Folge genau die gesuchten Glieder
108,117,126,...
Und nun willst du wissen, für welches n die Folge 9999 als Wert annimmt. Setze also
[mm]a_{n} = 9999[/mm]
[mm]\gdw 99 + n*9 = 9999[/mm]
Dies gilt es jetzt nach n umzustellen, und schon erhältst du die Nummer des Folgengliedes, welches 9999 ergibt:
[mm]99 + n*9 = 9999[/mm]
[mm]\gdw n*9 = 9900[/mm]
[mm]\gdw n = 1100[/mm].
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:53 So 04.05.2008 | Autor: | kushkush |
Dankeschön !
|
|
|
|