matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisFolgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Folgen
Folgen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen: Grenzwerte_Konvergenz
Status: (Frage) beantwortet Status 
Datum: 13:34 Fr 12.11.2004
Autor: annikach

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallihallo,

ich hoffe mir kann hier jemand mal diese Aufgabe erklären!

Also:

Die Folgen {sn} und {tn} seien gegeben durch:

s1= Wurzel (2)
sn=(Wurzel (2*sn-1))       (n>=2)
t1=wurzel(2)
tn=(wurzel(2+tn-1))        (n>=2)

Man untersuche, ob diese Folgen konvergieren und bestimme ggf. ihre Grenzwerte!


Wäre nett wenn mir jemand die erklären könnte!

lg annika

        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:54 Fr 12.11.2004
Autor: ChryZ

[mm] s_{1} [/mm] =  [mm] \wurzel{2} [/mm]
[mm] s_{n} [/mm] =  [mm] \wurzel{2s_{n-1}} [/mm]                    für alle   n [mm] \ge [/mm] 2

[mm] t_{1} [/mm] =  [mm] \wurzel{2} [/mm]
[mm] t_{n} [/mm] =  [mm] \wurzel{2+ t_{n-1}} [/mm]                  für alle   n [mm] \ge [/mm] 2


Jetzt ist ja [mm] s_{n-1} [/mm] =  [mm] \wurzel{2s_{n-2}}. [/mm] Setz das in [mm] s_{n} [/mm] ein. Mach das für [mm] s_{n-2} [/mm] weiter. Du solltest dann ein Muster finden und irgendwann bei [mm] s_{1} [/mm] landen.
Analog für t

Bezug
        
Bezug
Folgen: weitere Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 Fr 12.11.2004
Autor: Micha

Hallo!

Um die Konvergenz rekursiv definierter Folgen zu untersuchen musst du zunächst zeigen, dass sie beschränkt sind und monoton. Dies machst du bei der Beschränktheit mit vollständiger Induktion und bei der Monotonie reicht meist zu zeigen:

[mm] $s_{n+1} [/mm] - [mm] s_n \ge [/mm] 0$ bzw. [mm] $s_{n+1} [/mm] - [mm] s_n \le [/mm] 0$ jeweils für alle $n [mm] \in \IN$. [/mm]

Danach kannst du annehmen, dass bei rekursiv definierten Folgen:

[mm] $\lim_{n \to \infty} s_{n+1} [/mm] = [mm] \lim_{n \to \infty} s_n [/mm] =: s$ ist. Dann setzt du das in deine Rekursionsformel ein und erhälst dann einen Ausdruck, den du nach s umstellen kannst. :-)

Gruß Micha

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]