matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisFolgeglieder
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Folgeglieder
Folgeglieder < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgeglieder: Tipp
Status: (Frage) beantwortet Status 
Datum: 23:27 Mo 28.11.2005
Autor: hab-ne-frage

Hallo,

ich soll folgende Aufgaben lösen:

a) Es sei [mm] (a_{n}) [/mm] eine Folge mit positiven Folgegliedern [mm] a_{n}. [/mm] Gibt es eine Konstante c < 1 und ein N [mm] \in \IN [/mm] mit  [mm] \bruch{a_{n}+1}{a_{n}} \le [/mm] c für n [mm] \ge [/mm] N, so ist [mm] (a_{n}) [/mm] eine Nullfolge.

b) Für jedes k [mm] \in \IN [/mm] und jede reelle Zahl b >1 ist  [mm] \bruch{b^{k}}{b^{n}}_{n \ge1} [/mm] eine Nullfolge.

c) für jede reelle Zahl b ist  [mm] \bruch{b^{n}}{n!}_{n \ge1} [/mm] eine Nullfolge.

d) für jede natürliche Zahl k ist ( [mm] \vektor{n \\ k} \bruch{1}{2^{n}}_{n \ge1} [/mm] eine Nullfolge.

Ich muss hier mit der Konvergenz rechnen, ein N in Abhängigkeit von  [mm] \varepsilon [/mm] wählen usw., aber ich weiß einfach nicht wie ich anfangen soll.

Vielleicht kann mir jemand helfen.


        
Bezug
Folgeglieder: Versuch zu a)
Status: (Antwort) fertig Status 
Datum: 10:53 Di 29.11.2005
Autor: saxneat

Tach hab ne frage!

denke mal das +1 im Zähler gehört in den Index da ansonsten ein Widerspruch zu [mm] c\le [/mm] 1 entsteht
[mm] \bruch{a_{n}+1}{a_{n}}=1+\bruch{1}{a_{n}}\ge [/mm] 1

weiß nich ob das auch mit nem Epsilonbeweis geht aber es reicht doch bestimmt aus wenn du Ausagen über späte [mm] a_{n} [/mm] machen kannst und diese durch zwei Nullfolgen einschließt.

da [mm] \bruch{a_{n+1}}{a_{n}}\le [/mm] c , c<1 ist [mm] a_{n} [/mm] streng monoton fallend
und wegen [mm] a_{n}>0 [/mm] ist die Existenz eines Grenzwertes gesichert.

Schaun wir mal was man über späte n sagen kann.

[mm] \bruch{a_{n+1}}{a_{n}}\le [/mm] c [mm] \Rightarrow a_{n+1}\le c*a_{n} [/mm]

[mm] \bruch{a_{n+2}}{c*a_{n}}\le\bruch{a_{n+2}}{a_{n+1}}\le [/mm] c  [mm] \Rightarrow a_{n+2}\le c^{2}*a_{n} [/mm]

[mm] \bruch{a_{n+n}}{c^{n-1}*a_{n}}\le\bruch{a_{n+n}}{a_{n+n-1}}\le [/mm] c  [mm] \Rightarrow 0
wenn du nun [mm] a_{n} [/mm] als Konstante auffässt oder durch z.B. die nächst größere natürliche Zahl nach oben Abschätzt erhätst du:

[mm] \Rightarrow 0
und da [mm] c^{n}*K\to [/mm] 0 [mm] a_{n} [/mm] auch eine Nullfolge

hoffe ich konnte helfen

MfG
saxneat

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]