matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFolge: Grenzwert u. Monotonie
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Folge: Grenzwert u. Monotonie
Folge: Grenzwert u. Monotonie < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge: Grenzwert u. Monotonie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:32 Fr 10.12.2010
Autor: Denny22

Hallo an alle,

ich habe die Folge

     [mm] $a_n:=\frac{\left(n-\frac{1}{2}\right)^{\frac{1}{2}}}{2\cdot\left(\delta^2+(c\cdot n)^2\right)^{\frac{1}{4}}}$, $n\in\IN$, $n\neq [/mm] 0$, [mm] $0<\delta\in\IR$, $0\neq c\in\IR$ [/mm]

Und mochte gerne zeigen, dass

    [mm] $a_n\leqslant a_{n+1}$ $\forall\;n\in\IN$, $n\neq [/mm] 0$ (monoton wachsend)
    [mm] $\lim_{n\to\infty}a_n=\frac{1}{2\cdot\left(c^2\right)^{\frac{1}{4}}}$ [/mm] (Konvergenz)

Irgendwie machen mir jedoch die Potenzen zu schaffen. Hat jemand eine Idee,
wie ich dies zeigen koennte.

Danke und Gruss

        
Bezug
Folge: Grenzwert u. Monotonie: Antwort
Status: (Antwort) fertig Status 
Datum: 10:47 Fr 10.12.2010
Autor: rainerS

Hallo!

> ich habe die Folge
>  
> [mm]a_n:=\frac{\left(n-\frac{1}{2}\right)^{\frac{1}{2}}}{2\cdot\left(\delta^2+(c\cdot n)^2\right)^{\frac{1}{4}}}[/mm],
> [mm]n\in\IN[/mm], [mm]n\neq 0[/mm], [mm]0<\delta\in\IR[/mm], [mm]0\neq c\in\IR[/mm]
>  
> Und mochte gerne zeigen, dass
>  
> [mm]a_n\leqslant a_{n+1}[/mm]  [mm]\forall\;n\in\IN[/mm], [mm]n\neq 0[/mm] (monoton
> wachsend)
>      
> [mm]\lim_{n\to\infty}a_n=\frac{1}{2\cdot\left(c^2\right)^{\frac{1}{4}}}[/mm]
> (Konvergenz)
>  
> Irgendwie machen mir jedoch die Potenzen zu schaffen. Hat
> jemand eine Idee,
>  wie ich dies zeigen koennte.

Die Konvergenz ist relativ einfach zu zeigen: Klammere in Zähler und Nenner jeweils [mm]n^{1/2}[/mm] aus:

[mm] \frac{\left(n-\frac{1}{2}\right)^{\frac{1}{2}}}{2\cdot\left(\delta^2+(c\cdot n)^2\right)^{\frac{1}{4}}} = \bruch{n^{1/2}\left(1-\frac{1}{2n}\right)^{\frac{1}{2}}}{2n^{1/2}\cdot\left((\delta/n)^2+c^2\right)^{\frac{1}{4}}} = [/mm][mm] \bruch{\left(1-\frac{1}{2n}\right)^{\frac{1}{2}}}{2\left((\delta/n)^2+c^2\right)^{\frac{1}{4}}} [/mm] .

Nach Kürzen konvergieren Zähler und Nenner sogar unabhängig voneinander.

Die Monotonie sehe ich auf die Schnelle nicht, aber vielleicht geht es einfacher, wenn du den Grenzwert [mm]\frac{1}{2\cdot\left(c^2\right)^{\frac{1}{4}}}[/mm] ausklammerst und den verbleibenden Bruch betrachtest. Da Zähler und Nenner positiv sind, kannst du auch erst einmal die 4. Potenz berechnen und dann auf Monotonie untersuchen.

Viele Grüße
   Rainer

Bezug
                
Bezug
Folge: Grenzwert u. Monotonie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:47 Fr 10.12.2010
Autor: Denny22

Vielen lieben Dank fuer den Hinweis.

Es war im Nachhinein doch sehr einfach.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]