matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationFlussintegral berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Flussintegral berechnen
Flussintegral berechnen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flussintegral berechnen: Koordinaten Problem
Status: (Frage) beantwortet Status 
Datum: 16:30 Mo 04.04.2011
Autor: jaood

Aufgabe
Es soll das Flussintegral [mm] $\iint\limits_S \vec{v} \cdot d\vec{O}$ [/mm] des Vektorfeldes
[mm] \begin{displaymath} \vec{v}(x,y,z)= \begin{pmatrix} 1+z^4 \\ 1+z^4 \\ 1+x^2y^2 \end{pmatrix} \end{displaymath} [/mm]
durch die Fläche $S$, welche durch die Parametrisierung
[mm] \begin{displaymath} \vec{x}(u,v)=\begin{pmatrix} u \\ v \\ \frac{1}{4}\cdot u \cdot v \end{pmatrix} \quad \text{ mit } |u| \leq 1, |v|\leq 1 \end{displaymath} [/mm]
gegeben ist, berechnet werden.

Hallo Leute,

habe Probleme mit der oben stehenden Aufgabe. Mein Problem bezieht sich auf die unterschiedlichen variablen. Wenn ich das Oberflächenelement bereche, dann erhalte ich für das Integral:
[mm] \iint\limits_S \vec{v} \cdot d\vec{O} [/mm] = [mm] \int_{-1}^{1}\int_{-1}^{1} \begin{pmatrix} 1+z^4 \\ 1+z^4 \\1 +x^2y^2 \end{pmatrix} \times \begin{pmatrix} - \frac{1}{4}v \\ - \frac{1}{4}u \\ 1 \end{pmatrix} [/mm] dudv

Die Integrationsvariablen sind ja u und v. Ich möchte also wahrscheinlich [mm] z^4 [/mm] und [mm] x^2y^2 [/mm] durch u und v darstellen. Wie kann ich das machen, bzw was ist hier das richtige Vorgehen?

Vielen Dank im voraus!

        
Bezug
Flussintegral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Mo 04.04.2011
Autor: Al-Chwarizmi


> Es soll das Flussintegral [mm]\iint\limits_S \vec{v} \cdot d\vec{O}[/mm]
> des Vektorfeldes
> [mm]\begin{displaymath} \vec{v}(x,y,z)= \begin{pmatrix} 1+z^4 \\ 1+z^4 \\ 1+x^2y^2 \end{pmatrix} \end{displaymath}[/mm]
>  
> durch die Fläche [mm]S[/mm], welche durch die Parametrisierung
> [mm]\begin{displaymath} \vec{x}(u,v)=\begin{pmatrix} u \\ v \\ \frac{1}{4}\cdot u \cdot v \end{pmatrix} \quad \text{ mit } |u| \leq 1, |v|\leq 1 \end{displaymath}[/mm]
>  
> gegeben ist, berechnet werden.
>  Hallo Leute,
>  
> habe Probleme mit der oben stehenden Aufgabe. Mein Problem
> bezieht sich auf die unterschiedlichen variablen. Wenn ich
> das Oberflächenelement bereche, dann erhalte ich für das
> Integral:
> [mm]\iint\limits_S \vec{v} \cdot d\vec{O}[/mm] =
> [mm]\int_{-1}^{1}\int_{-1}^{1} \begin{pmatrix} 1+z^4 \\ 1+z^4 \\1 +x^2y^2 \end{pmatrix} \times \begin{pmatrix} - \frac{1}{4}v \\ - \frac{1}{4}u \\ 1 \end{pmatrix}\ du\ dv[/mm]       [haee]
>  
> Die Integrationsvariablen sind ja u und v. Ich möchte also
> wahrscheinlich [mm]z^4[/mm] und [mm]x^2y^2[/mm] durch u und v darstellen. Wie
> kann ich das machen, bzw was ist hier das richtige
> Vorgehen?
>
> Vielen Dank im voraus!  



Hallo jaood,

bei der vorliegenden Aufgabe ist es natürlich so, dass
für die Punkte der Fläche S
x(u,v)=u und y(u,y)=v ist, sowie [mm] z(u,v)=\frac{1}{4}*u*v [/mm]

Der Übersichtlichkeit halber ist es aber wohl trotzdem
eine ganz gute Idee, für die Integration alles mittels
der Variablen u und v zu schreiben.

Wie du vom Integranden mit dem Skalarprodukt  [mm] \vec{v} \cdot d\vec{O} [/mm]
zu einem mit einem Vektorprodukt kommst, ist mir
rätselhaft (obwohl ein Vektorprodukt zur Berech-
nung des Normalenvektors mit im Spiel war)



LG    Al-Chw.


Bezug
                
Bezug
Flussintegral berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:03 Mo 04.04.2011
Autor: jaood

Vielen Dank für die schnelle Antwort. Habe das Prinzip nun verstanden.

Das Kreuzprodukt hat dort natürlich nichts verloren, es handelt sich um ein Flüchtigkeitsfehler.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]