Fluß Vektorfeld durch Zylinder < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | Berechnen Sie für das Vektorfeld [mm] \vec{A}(\vec{r})=(x,y,0) [/mm] den Fluß durch um die z-Achse zentrierte Zylinder mit Radius R und Höhe H. |
Hallo,
ich bekomme die Aufgabe nicht wirklich hin.
Allgemein gilt ja für den Fluß [mm] \Phi=\integral_{\partial V}^{}{\vec{A}{\cdot}d\vec{F}}
[/mm]
Das Vektorfeld ist radialsymmetrisch, weshalb die Deckflächen des Zylinders für den Fluß nicht wichtig sind, da das Skalarprodukt hier Null ist.
Als erstes würde ich das Vektorfeld in Zylinderkoordinaten umwandeln [mm] \Rightarrow \vektor{r\cdot cos(\phi) \\ r\cdot sin(\phi) \\ 0}
[/mm]
Für [mm] d\vec{F} [/mm] erhalte ich [mm] d\vec{F}=R{\cdot}d{\phi}{\cdot}dz{\cdot}\vec{e}_{r}
[/mm]
Wie kann ich das jetzt skalar multiplizieren und ist es bis jetzt noch richtig?
Gruß LordPippin
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:54 Mi 07.09.2011 | Autor: | notinX |
Hallo,
> Berechnen Sie für das Vektorfeld [mm]\vec{A}(\vec{r})=(x,y,0)[/mm]
> den Fluß durch um die z-Achse zentrierte Zylinder mit
> Radius R und Höhe H.
> Hallo,
> ich bekomme die Aufgabe nicht wirklich hin.
> Allgemein gilt ja für den Fluß [mm]\Phi=\integral_{\partial V}^{}{\vec{A}{\cdot}d\vec{F}}[/mm]
>
> Das Vektorfeld ist radialsymmetrisch, weshalb die
> Deckflächen des Zylinders für den Fluß nicht wichtig
> sind, da das Skalarprodukt hier Null ist.
> Als erstes würde ich das Vektorfeld in
> Zylinderkoordinaten umwandeln [mm]\Rightarrow \vektor{r\cdot cos(\phi) \\ r\cdot sin(\phi) \\ 0}[/mm]
>
> Für [mm]d\vec{F}[/mm] erhalte ich
> [mm]d\vec{F}=R{\cdot}d{\phi}{\cdot}dz{\cdot}\vec{e}_{r}[/mm]
>
> Wie kann ich das jetzt skalar multiplizieren und ist es bis
weißt Du nicht, wie man ein Skalarprodukt bildet, oder wo genau liegt das Problem?
> jetzt noch richtig?
Ja, sieht richtig aus.
>
> Gruß LordPippin
Gruß,
notinX
|
|
|
|
|
Hallo,
für ein Skalarprodukt braucht man doch 2 Vektoren gleicher Dimension. Ich bekomme es nicht hin, [mm] d\vec{F} [/mm] so zu ändern.
Gruß
|
|
|
|
|
hallo!
Ganz anschaulich steht der Vektor [mm] d\vec{F} [/mm] an jeder Stelle senkrecht auf der Zylinderfläche. Daraus solltest du schon erkennen, daß die vektorielle Komponente [mm] $\vektor{0\\ \sin\phi \\ \cos\phi}$ [/mm] sein muß. Das ist grade dein [mm] \vec{e}_r [/mm] .
Nebenbei: Wie sieht es eigentlich mit Betrag und Richung des Feldes an jedem Punkt der Zylineroberfläche aus? Ich behaupte, man kommt in dieser Aufgabe auch ohne Integrieren aus. Allerdings solltest du es zur Übung natürlich mit machen.
|
|
|
|
|
Hallo,
das Feld ist immer parallel zum Normalenvektor der Zylinderoberfläche. Auf den "Deckeln" senkrecht.
Ich verstehe jetzt nicht, wie du auf den Vektor [mm] $\vektor{0\\ \sin\phi \\ \cos\phi}$ [/mm] kommst. Ist der Einheitsvektor [mm] \vec{e}_{R} [/mm] nicht [mm] $\vektor{\cos\phi\\ \sin\phi \\0 }$?
[/mm]
Gruß
|
|
|
|
|
Hallo!
Ja, du hast natürlich recht.
Nun setzt du in deinem Feld A für x und y Polarkoordinaten ein. Zusammen mit deinem [mm] d\vec{F} [/mm] bekommst du dann dein Skalarprodukt, sodaß du anschließend integrieren kannst.
Mit dem anderen Ansatz meine ich eben, daß das Feld senkrecht auf der Mantelfläche steht, und vom Betrag her überall gleich ist. Der Fluß ergibt sich dann einfach als Produkt von Oberfläche und Betrag des Feldes...
|
|
|
|