matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenFlugbahnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Flugbahnen
Flugbahnen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flugbahnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:21 Di 15.01.2008
Autor: Owen

Aufgabe
Zum Zeitpunkt [mm] t_{0}:=0 [/mm] starten zwei Flugkörper:
Der Eine vom Punkt A= (-2;3;1) mit der Geschwindigkeit [mm] \vec{va}=(2;-2;3)^{T}, [/mm] der Andere vom Punkt B=(3;2;2) mit der Geschwindigkeit [mm] \vec{vb}=(6;-3;-2)^{T}. [/mm] Zu welchem Zeitpunkt wird die Entfernung zwischen den beiden Flugkörpern am kleinsten?

Ich habe daran gedacht, den kürzesten Abstand in Abhängigkeit von der Zeit darzustellen: [mm] d=\vmat{ (\vec{q}-\vec{p}) *\vec{no} } [/mm]

[mm] d=\vmat{[\vektor{-2 \\ 3 \\1}-\vektor{3 \\ 2 \\ 2}]*\bruch{\vektor{2t \\ -2t \\ 3} X \vektor{6t \\ -3t \\ -2t}}{\vmat{\vec{no} }}} [/mm]

[mm] =\vmat{\bruch{-49t²}{t²*\wurzel{689}} } [/mm]

Hier kürzt sich jedoch das t heraus. Wie geht man die Aufgabe richtig an?

        
Bezug
Flugbahnen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 Di 15.01.2008
Autor: M.Rex

Hallo.

Die Idee ist gar nicht so falsch.

Fangen wir mit Körper 1 an.

Dieser fliegt auf der Geraden:

[mm] g_{1}:\vec{x}=\vektor{-2\\3\\1}+t\vektor{2\\-2\\3}, [/mm] also hat er zum Zeitpunkt t folgenden Punkt [mm] P_{1} [/mm] erreicht:
[mm] \vec{p_{1}}=\vektor{2t+2\\3-2t\\1+3t} [/mm]

Für Körper 2 folgt analog:

[mm] g_{2}:\vec{x}=\vektor{3\\2\\2}+t\vektor{6\\-3\\-2}, [/mm] also hat er zum Zeitpunkt t folgenden Punkt [mm] P_{2} [/mm] erreicht:
[mm] \vec{p_{2}}=\vektor{3+6t\\2-3t\\2-2t} [/mm]


Der Abstand der Flugkörper ist jetzt die Länge des Vektors [mm] \overrightarrow{P_{1}P_{2}} [/mm]

[mm] \overrightarrow{P_{1}P_{2}}=\vektor{3+6t\\2-3t\\2-2t}-\vektor{2t+2\\3-2t\\1+3t}=\vektor{1+4t\\-1-t\\1-5t} [/mm]

Also gilt für die Abstandfunktion A(t):

[mm] A(t)=|\overrightarrow{P_{1}P_{2}}| [/mm]
[mm] =\wurzel{(1+4t)²+(-1-t)²+(1-5t)²} [/mm]
=...

Hiervon suchst du jetzt das Minimum.

Marius

Bezug
                
Bezug
Flugbahnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:29 Mi 16.01.2008
Autor: Owen

ok, ich habe die Idee verstanden, dankeschön.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]