matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFlächenstück
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Flächenstück
Flächenstück < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenstück: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:23 Do 13.11.2008
Autor: Dinker

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

[Dateianhang nicht öffentlich]

Ich habe Verständnisschwierigkeiten bei dieser Aufgabe:
- Es gibt doch gar keinen reinen Wendepunkt?
- Sollte eine Gerade gezogen werden, welche senkrecht zur Wendetangente steht?

Wäre froh, wenn mir jemand helfen könnte, was hier gemeint wäre

Besten Dank

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Flächenstück: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 Do 13.11.2008
Autor: M.Rex

Hallo

Es gibt doch einen Wendepunkt.

f(x)=2x-x³
f'(x)=2-3x²
f''(x)=-6x
f'''(x)=-6

[mm] f''(x_{w})=0 [/mm]
[mm] \Rightarrow x_{w}=0 [/mm]
[mm] f'''(0)=-6\ne0 [/mm]

Also ist W(0/0) ein Wendepunkt.

Marius

Bezug
        
Bezug
Flächenstück: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Do 13.11.2008
Autor: abakus


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Ich habe Verständnisschwierigkeiten bei dieser Aufgabe:
>  - Es gibt doch gar keinen reinen Wendepunkt?

Es kann keinen Terrassenpunkt an der Stelle 0 geben. Mit deiner ersten Ableitung ist der Anstieg an der Stelle 0 gleich 2.
Gruß Abakus


>  - Sollte eine Gerade gezogen werden, welche senkrecht zur
> Wendetangente steht?
>  
> Wäre froh, wenn mir jemand helfen könnte, was hier gemeint
> wäre
>  
> Besten Dank


Bezug
        
Bezug
Flächenstück: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Do 13.11.2008
Autor: Dinker

Habs mal versucht....

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                
Bezug
Flächenstück: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Do 13.11.2008
Autor: M.Rex

Hallo

Der Schnittpunkt passt leider nicht.

[mm] g(x)=-\bruch{x}{2} [/mm] und [mm] f(x)=2x-x^{3} [/mm]

Gleichsetzen:
[mm] -\bruch{x}{2}=2x-x^{3} [/mm]
[mm] \gdw x³+\red{\bruch{3}{2}}x=0 [/mm]
[mm] \gdw x(x²+\bruch{3}{2})=0 [/mm]
[mm] \gdw [/mm] x=0 oder [mm] x=\pm\wurzel{\bruch{3}{2}} [/mm]

Und jetzt beachte, dass du 2 eingeschlosseen Flächen hast, aber du kannst die Symmetrie ausnutzen:

$$ [mm] A=2*\integral_{0}^{\wurzel{\bruch{3}{2}}}2x-x³-\bruch{1}{2}xdx [/mm]  $$
$$ [mm] =2*\integral_{0}^{\wurzel{\bruch{3}{2}}}\bruch{3}{2}x-x³dx [/mm] $$
$$ [mm] =2*\left[\bruch{3}{4}x²-\bruch{1}{4}x^{4}\right]_{0}^{\wurzel{\bruch{3}{2}}} [/mm] $$
$$ [mm] =2*\left(\left[\bruch{3}{4}\left(\wurzel{\bruch{3}{2}}\right)^{2}-\bruch{1}{4}\left(\wurzel{\bruch{3}{2}}\right)^{4}\right]-\left[\bruch{3}{4}(0)^{2}-\bruch{1}{4}(0)^{4}\right]\right) [/mm] $$
$$ [mm] =2*\left[\bruch{3}{4}*\bruch{3}{2}-\bruch{1}{4}*\left(\bruch{3}{2}\right)^{2}\right] [/mm] $$
$$ [mm] =2*\left[\bruch{9}{8}-\bruch{1}{4}*\bruch{9}{4}\right] [/mm] $$
$$ [mm] =2*\left[\bruch{9}{8}-\bruch{9}{16}\right] [/mm] $$
$$ [mm] =2*\left[\bruch{9}{16}\right] [/mm] $$
$$ [mm] =\bruch{18}{16} [/mm] $$
$$ [mm] =\bruch{9}{8} [/mm] $$

Marius




Bezug
                        
Bezug
Flächenstück: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Do 13.11.2008
Autor: Dinker

Hallo
Bist du mit den [mm] \wurzel{2/3} [/mm] ?

Ich glaube nicht

Bezug
                                
Bezug
Flächenstück: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:52 Do 13.11.2008
Autor: Dinker

Sorry meinte natürlich [mm] \wurzel{3/2} [/mm]

Bezug
                                
Bezug
Flächenstück: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 Do 13.11.2008
Autor: M.Rex

Hallo

Hast recht, dein Schnittpunkt [mm] \wurzel{\bruch{5}{2}} [/mm] ist korrekt.
Aber dass du beide Flächen berechnen musst, bleibt als Hinweis.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]