matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikFlächenladungsdichte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Physik" - Flächenladungsdichte
Flächenladungsdichte < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenladungsdichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:54 Di 21.04.2015
Autor: Skyrula

Aufgabe
Berechne die Flächenladungsdichte einer homogenen unendlich ausgedehnten und dünnen Fläche.


Hallo zusammen,

mir ist vorhin ein Durchbruch gelangen bei der Berechnung einer Linienladungsdichte (unendlich lang und dünn) aber nun soll ich die Flächenladungsdichte einer unendlichen Platte berechnen und würde mich wirklich freuen wenn mich jemand in die richtige Richtung schupsen könnte.
Ein elektrostatischer Feldvektor [mm] \vec{E}(\vec{r}), [/mm] r [mm] \in \IR^3 [/mm] soll am Ende raus kommen.

Danke im Vorraus!


        
Bezug
Flächenladungsdichte: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 Di 21.04.2015
Autor: leduart

Hallo
Wenn nichts weiter gegeben ist, kannst du das nicht berechnen, da die Gesamtladung ja unendlich groß ist. Wie lautet die Aufgabe genau?
Gruß leduart

Bezug
                
Bezug
Flächenladungsdichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:24 Di 21.04.2015
Autor: Skyrula

Geben sie den elektrischen Feldvektor $ [mm] \vec{E}(\vec{r}), \vec{r} \in \IR [/mm] $ von folgendem System an, indem Sie über die Ladung integrieren:

Eine (unendlich lange, unendlich dünne, homogene) Flächenladungsdichte [mm] \sigma(\vec{r})=\sigma\delta(z), [/mm] mit [mm] \delta= [/mm] konst. Ladungsdichte

Danke, dass du mir hilfst.



Bezug
                        
Bezug
Flächenladungsdichte: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Di 21.04.2015
Autor: leduart

Hallo
Hier ist dich die Flächenladungsdichte mit [mm] \sigma [/mm] gegeben und du willst nur E berechnen, die Flaäche liegt wegen [mm] \delta(z) [/mm] in der x.y Ebene. due kannst also [mm] Q=\sigma*A [/mm] für jedesTeilstück der Ebene bestimmen.
Gruß leduart

Bezug
                                
Bezug
Flächenladungsdichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:43 Di 21.04.2015
Autor: Skyrula

Vielen Dank für die Info, nur brauche ich, damit ich starten kann noch ein paar mehr infos und vielleicht auch den ersten Term den es dann zu bearbeiten gilt. Das Thema wurde gerade neu in der Uni eingeführt und der Prof hat nicht wirklich eine Hilfestellung in der Vorlesung aufgezeigt, wie man solche Sachverhältnisse lösen soll.
Also für etwas mehr Tipps würde ich mich wirklich freuen!

Danke

Bezug
                                        
Bezug
Flächenladungsdichte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Di 21.04.2015
Autor: chrisno

Zuerst musst Du die Symmetrie der Situation erkennen. Die gibt Dir die Richtung von [mm] $\vec{E}$. [/mm] Die wiederum gibt Dir die Abhängigkeit vom Abstand zur Ebene.
Habt ihr die Integralsätze von Gauß und Stokes?

Bezug
                                        
Bezug
Flächenladungsdichte: Antwort
Status: (Antwort) fertig Status 
Datum: 09:33 Mi 22.04.2015
Autor: Event_Horizon

Hallo!

Zu der Aufgabe mit der Linienladung hatte ich dich ja auch die erste Maxwell-Gleichung hingewiesen. Das hier ist im Prinzip das selbe in grün. Nachdenken, wie das Feld geometrisch aussehen muß, und daraus eine günstige Integrationsfläche angeben. (Achtung: Es gibt hier zwei getrennte Flächen!). Und dann kommst du auch hier mit den Grundrechenarten aus.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]