matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisFlächeninhaltsfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Flächeninhaltsfunktion
Flächeninhaltsfunktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhaltsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:46 So 02.10.2005
Autor: Julli

Hallo,
ich muss bis Dienstag die Flächeninhaltsfunktion der Funktion  [mm] \wurzel{x} [/mm] bestimmen, jedoch komme ich irgendwie nicht weiter. Wir haben bis jetzt noch keine Integralrechnung durchgeführt, dementsprechend kann ich keine Integrale benutzen. Ich denke die Aufgabe soll zu den Integralen hinleiten. Als Hinweis hat unser Lehrer uns den Tipp gegeben, die sog. "Scheibchenmetode" zu benutzen, jedoch komme ich da auch nicht weiter. Habe da dann das Problem das ich die Summe ner Wurzel bilden müsste..
Es wäre echt super, wenn mir jemand helfen könnte.
Gruß Julli

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Flächeninhaltsfunktion: Umkehrfunktion
Status: (Antwort) fertig Status 
Datum: 11:13 So 02.10.2005
Autor: danielinteractive

Hallo Julli ! [willkommenmr]

Stimmt, mit der Scheibchen- oder Streifenmethode komme ich da auch nicht weiter. Es gibt aber einen anderen Weg: Und zwar über die Umkehrfunktion zu [mm]\wurzel{x}[/mm], also [mm]x^2[/mm]. Schauen wir uns mal die Skizze an:
[Dateianhang nicht öffentlich]
Links gehts los, wir wollen die gelbe Fläche unter der Funktion [mm]\wurzel{x}[/mm] berechnen. Diese Fläche ist gleich der Fläche des roten Rechtecks minus der grünen Fläche. Wir können also auch die grüne Fläche berechnen und so zur gesuchten kommen! Wenn wir das ganze Rechteck an der Winkelhalbierenden spiegeln, kommen wir zum rechten Bild. Bekanntlich ist die blaue Funktion jetzt die Umkehrfunktion, also [mm]x^2[/mm]. Und die grüne Fläche ist die Fläche von 0 bis [mm]\wurzel{b}[/mm] unterhalb dieser Funktion. Die Flächenfunktion von der Normalparabel habt ihr wahrscheinlich schon ausgerechnet oder ? Wenn man die hat, ist also die gesuchte Fläche:
[mm]F(b)=b*\wurzel{b}-G(\wurzel{b})[/mm], wobei G jetzt die Flächenfunktion von der Funktion [mm]x^2[/mm] ist.

mfG
Daniel

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]