matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFlächeninhaltsfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Flächeninhaltsfunktion
Flächeninhaltsfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhaltsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:45 Fr 04.09.2009
Autor: dihaz

Aufgabe
Ermittle den Flächeninhalt zwischen der Funktion f(x)=2x+3 und der X- Achse zur unteren Grenze 1?

Hallo Leute, ich hoffe ihr könnt mir helfen. Also ich hab mit der Integralrechnung angefangen, bin aber noch am Anfang^^
Also wir bestimmen diese Flächen bisher mit der Flächeninhaltsfunktion.Diese kann ich auch, aber nur wenn die untere Grenze 0 ist. also das Intervall zb. von 0 bis 2 wäre.
Nun ist es aber bei der genannten Aufgabe bei 1 bis 2 (3,4,5).
Meine Frage wäre, wie ich die Flächeninhaltsfunktion von f(x)= 2x+3 bestimme wenn die untere Grenze 1 ist und nicht 0.
Ich hoffe ihr könnt mir helfen, wäre wichtig. danke schön =)

# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Flächeninhaltsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Fr 04.09.2009
Autor: Al-Chwarizmi


> Ermittle den Flächeninhalt zwischen der Funktion f(x)=2x+3
> und der X- Achse zur unteren Grenze 1?


> Also wir bestimmen diese Flächen bisher mit der
> Flächeninhaltsfunktion.Diese kann ich auch, aber nur wenn
> die untere Grenze 0 ist. also das Intervall zb. von 0 bis 2
> wäre.
>  Nun ist es aber bei der genannten Aufgabe bei 1 bis 2
> (3,4,5).
>  Meine Frage wäre, wie ich die Flächeninhaltsfunktion von
>  f(x)= 2x+3 bestimme wenn die untere Grenze 1 ist und nicht 0.


Die Fläche von 0 bis x kann man aufteilen in die von 0 bis 1
plus die von 1 bis x. Also kannst du die Fläche von 1 bis x
erhalten, indem du zuerst die Fläche von 0 bis x nimmst und
dann davon die von 0 bis 1 subtrahierst.


LG    Al-Chw.

Bezug
        
Bezug
Flächeninhaltsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:12 Sa 05.09.2009
Autor: Al-Chwarizmi


> Ermittle den Flächeninhalt zwischen der Funktion f(x)=2x+3
> und der X- Achse zur unteren Grenze 1?

>  Also wir bestimmen diese Flächen bisher mit der
> Flächeninhaltsfunktion.Diese kann ich auch, aber nur wenn
> die untere Grenze 0 ist. also das Intervall zb. von 0 bis 2
> wäre.
>  Nun ist es aber bei der genannten Aufgabe bei 1 bis 2
> (3,4,5).
>  Meine Frage wäre, wie ich die Flächeninhaltsfunktion von
> f(x)= 2x+3 bestimme wenn die untere Grenze 1 ist und nicht 0.


Die Flächeninhaltsfunktion von x=0 an gerechnet
hast du wohl schon, nämlich

      [mm] F(x)=x^2+3*x [/mm]

Wenn du nun zum Beispiel den Flächeninhalt des
Trapezes berechnen willst, das zwischen der x-Achse,
der Geraden y=f(x) und den vertikalen Geraden x=2
und x=5 berechnen willst, kannst du so rechnen:

     [mm] F(\red{5})=\red{5}^2+3*\red{5} [/mm] = Fläche des von x=0 bis [mm] x=\red{5} [/mm] reichenden Trapezes

     [mm] F(\red{2})=\red{2}^2+3*\red{2} [/mm] = Fläche des von x=0 bis [mm] x=\red{2} [/mm] reichenden Trapezes

Die Differenz davon ergibt die Fläche des von
x=2 bis x=5 reichenden Trapezes:

     [mm] F(5)-F(2)=\,.....\,-\,.....\,=\,..... [/mm]

Kontrollieren kannst du die Rechnung leicht mit
der Formel für die Trapezfläche.

LG    Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]