matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenFlächeninhalt von Dreiecken
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Vektoren" - Flächeninhalt von Dreiecken
Flächeninhalt von Dreiecken < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt von Dreiecken: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 Mo 28.07.2014
Autor: begker1

Aufgabe
Eine Gerade k schneidet eine Gerade g in einem Punkt S.
Ein Punkt R auf der Geraden g und ein Punkt T auf der Geraden ksollen mit dem Punkt S ein gleichschenkliges Dreieck mit vorgegebenem Flächeninhalt bilden.
Begründen Sie, dass die Längen der Dreiecksseiten nicht eindeutig festgelegt sind, wenn sich die Geraden g und k nicht rechtwinklig schneiden.

Ich habe mir den Sachverhalt mehrmals skizziert. Warum sollte man die Punkte T und R denn nicht finden können? Es kann doch nur ein einziges Dreieck STR mit einem bestimmten Winkel bei S geben, welches eine bestimmte Fläche einschließt.

        
Bezug
Flächeninhalt von Dreiecken: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 Mo 28.07.2014
Autor: weduwe

idee: man (ver)schiebe und/oder (ver)drehe das zeug so, dass gilt
S(0/0), R(r/0)
dann gilt  mit |ST| = |SR| = r

für die fläche

[mm]A=\frac{1}{2}\cdot r^2\cdot sin\alpha[/mm]

was offensichtlich nur für ein rechtwinkeliges 3eck mit [mm] \alpha=\frac{\pi}{2} [/mm] eindeutig ist

Bezug
                
Bezug
Flächeninhalt von Dreiecken: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:24 Mo 28.07.2014
Autor: rmix22


> idee: man (ver)schiebe und/oder (ver)drehe das zeug so,

Na, mit "zeug" wird die Sache ja plötzlich ganz klar und eindeutig ;-)

> dass gilt
>  S(0/0), R(r/0)
>  dann gilt  mit |ST| = |SR| = r

Wozu? Du verwendest das doch danach nicht mehr. Ist daher nur verwirrend.

>  
> für die fläche
>  
> [mm]A=\frac{1}{2}\cdot r^2\cdot sin\alpha[/mm]

Nicht unbedingt. Du unterstellst, dass S der gemeinsame Punkt der gleich langen Dreiecksseiten ist, aber das ist nicht zwangsläufig so. Da gibt es noch eine dritte Lösungsmöglichkeit (wie in meiner Antwort näher erläutert), welche du nicht bedacht hast. Außerdem fehlt die Angabe, welchen Winkel du mit [mm] \alpha [/mm] bezeichnest. Genau das ist aber das Wesentliche. Für die beiden Geraden gibt es ja gerade zwei Möglichkeiten, den Schnittwinkel und damit Scheitelwinkel des Dreiecks festzulegen. Das sollte schon auch angegeben werden, ehe man auf die diesbezügliche Eindeutigkeit im Falle eines rechten Winkels hinweist.

>  
> was offensichtlich nur für ein rechtwinkeliges 3eck mit
> [mm]\alpha=\frac{\pi}{2}[/mm] eindeutig ist

Ja, und jetzt fehlt nur noch die (recht einfache) Begründung, dass die dritte von mir angegebene Lösungsmöglichkeit für [mm] $\alpha=\frac{\pi}{2}$ [/mm] nicht existiert.

RMix


Bezug
        
Bezug
Flächeninhalt von Dreiecken: Antwort
Status: (Antwort) fertig Status 
Datum: 18:09 Mo 28.07.2014
Autor: rmix22


> Eine Gerade k schneidet eine Gerade g in einem Punkt S.
> Ein Punkt R auf der Geraden g und ein Punkt T auf der
> Geraden ksollen mit dem Punkt S ein gleichschenkliges
> Dreieck mit vorgegebenem Flächeninhalt bilden.
> Begründen Sie, dass die Längen der Dreiecksseiten nicht
> eindeutig festgelegt sind, wenn sich die Geraden g und k
> nicht rechtwinklig schneiden.
>  Ich habe mir den Sachverhalt mehrmals skizziert. Warum
> sollte man die Punkte T und R denn nicht finden können? Es
> kann doch nur ein einziges Dreieck STR mit einem bestimmten
> Winkel bei S geben, welches eine bestimmte Fläche
> einschließt.  

Nun, es gibt, wenn die beiden Geraden einander nicht rechtwinkelig schneiden, mehrere Möglichkeiten, ein gleichschenkeliges Dreieck mit gegebenen Flächeninhalt auf die beschriebene Art und Weise zu konstruieren.
Wenn wir annehmen, dass die beiden gleichen Seiten ST und SR sind, so gibt es eine Lösung im spitzwinkeligen Sektor und eine andere im stumpfwinkeligen.
Außerdem existiert noch eine weitere Lösung im spitzwinkeligen Sektor, dei dem entweder [mm] \overline{SR}=\overline{RT} [/mm] oder aber auch [mm] \overline{ST}=\overline{TR} [/mm] gilt. Geht es also nur um die Längen der Dreieckseiten, so gibt es hier drei unterschiedliche Lösungen.

RMix



Bezug
                
Bezug
Flächeninhalt von Dreiecken: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:59 Mi 30.07.2014
Autor: begker1

Ja, das leuchtet mir ein. Ich danke euch!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]