matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFlächeninhalt bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Flächeninhalt bestimmen
Flächeninhalt bestimmen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt bestimmen: Idee
Status: (Frage) beantwortet Status 
Datum: 13:18 Do 01.11.2012
Autor: Kreuzkette

Aufgabe
Geben Sie den Flächeninhalt an, der von der Funktion f(x)=4x+1 und der x-Achse im Intervall von -1 bis 2 eingeschlossen wird.

Hallo erstmal,

da muss ich ganz ehrlich sagen. Da hab ich nicht mal einen Ansatz. Als Tipp stand da noch, man könnte die Stammfunktion zuerst aufstellen.

[mm] F(x)=8x^{2}+x [/mm]

Doch wie geht es weiter?

Liebe Grüße

        
Bezug
Flächeninhalt bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Do 01.11.2012
Autor: M.Rex


> Geben Sie den Flächeninhalt an, der von der Funktion
> f(x)=4x+1 und der x-Achse im Intervall von -1 bis 2
> eingeschlossen wird.
>  Hallo erstmal,
>  
> da muss ich ganz ehrlich sagen. Da hab ich nicht mal einen
> Ansatz. Als Tipp stand da noch, man könnte die
> Stammfunktion zuerst aufstellen.
>  
> [mm]F(x)=8x^{2}+x[/mm]
>  
> Doch wie geht es weiter?
>  
> Liebe Grüße

Mach dir mal eine Skizze, dann siehst du, dass die Funktion im Intervall eine Nullstelle [mm] x_n [/mm] hat.

[Dateianhang nicht öffentlich]

Berechne diese zuerst, und berechne dann die Fläche A mit:

[mm] A=\left|\int\limits_{-1}^{x_{n}}4x+1dx\right|+\left|\int\limits_{x_{n}}^{2}4x+1dx\right| [/mm]

Marius


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Flächeninhalt bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Do 01.11.2012
Autor: Kreuzkette

Okay, die Nullstelle liegt bei -1/4.

Der Flächeninhalt beträgt dann 9 Flächeneinheiten. Danke :)

Bezug
                        
Bezug
Flächeninhalt bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 Do 01.11.2012
Autor: M.Rex


> Okay, die Nullstelle liegt bei -1/4.

Ja

>  
> Der Flächeninhalt beträgt dann 9 Flächeneinheiten. Danke
> :)

Nein, es gilt zwar:

[mm] \int\limits_{-1}^{2}4x-1dx=9 [/mm]

Aber das ist nicht der Flächeninhalt, diesen musst du über den Weg der Integralaufspaltung gehen, und die Betragsstriche beachten.

Marius


Bezug
                                
Bezug
Flächeninhalt bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 Sa 03.11.2012
Autor: Kreuzkette

Okay, dann habe ich, wenn ich das aufspalte... 14 raus?

Kann das sein?

Bezug
                                        
Bezug
Flächeninhalt bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:55 Sa 03.11.2012
Autor: Steffi21

Hallo, dein Ergebnis ist nicht korrekt, um den Fehler zu finden, poste mal bitte deine Rechenschritte, Steffi

Bezug
                                                
Bezug
Flächeninhalt bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:59 Sa 03.11.2012
Autor: Kreuzkette

okay...

(4*(-1/4)+1) - (4*(-1) + 1)   +   (4*2+1) - (4*(-1/4)+1)
=14

Bezug
                                                        
Bezug
Flächeninhalt bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:05 Sa 03.11.2012
Autor: Steffi21

Hallo, wenn ich die Rechnung sehe, so ist anzunehmen, deine Stammfunktion ist falsch, sie lautet [mm] 2x^2+x, [/mm] auch kommt bei deiner Rechnung 12 raus, nicht 14, Steffi

Bezug
                                                                
Bezug
Flächeninhalt bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:08 Mo 12.11.2012
Autor: Kreuzkette

Okay, da ich auf den einen Weg ja einige Fehler gemacht habe und ich die Idee mit den Dreiecksberechnungen ganz gut fand, hab ich diesen Weg nun durchgeführt..

1. Dreieck: -3*(-0,75)*0,5 = 1,125
2. Dreieck: 2.25 * 9 * 0,5 = 10,125

gesamt: 11,25

Kann das jemand freundlicherweise überprüfen?

Bezug
                                                                        
Bezug
Flächeninhalt bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:15 Mo 12.11.2012
Autor: abakus


> Okay, da ich auf den einen Weg ja einige Fehler gemacht
> habe und ich die Idee mit den Dreiecksberechnungen ganz gut
> fand, hab ich diesen Weg nun durchgeführt..
>  
> 1. Dreieck: -3*(-0,75)*0,5 = 1,125
>  2. Dreieck: 2.25 * 9 * 0,5 = 10,125
>  
> gesamt: 11,25
>  
> Kann das jemand freundlicherweise überprüfen?

Stimmt!


Bezug
                                                                                
Bezug
Flächeninhalt bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:18 Mo 12.11.2012
Autor: Kreuzkette

Danke :)
Schönen Tag noch euch allen!

Bezug
                                                
Bezug
Flächeninhalt bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:59 Sa 03.11.2012
Autor: abakus


> Hallo, dein Ergebnis ist nicht korrekt, um den Fehler zu
> finden, poste mal bitte deine Rechenschritte, Steffi

Vor allem lässt sich das Ergebnis selbst durch zwei stinknormale Dreiecksflächenberechnungen ohne Integralrechnung bestätigen  bzw. widerlegen.
Gruß Abakus


Bezug
                                                        
Bezug
Flächeninhalt bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:03 Sa 03.11.2012
Autor: M.Rex

Hallo Abakus

>
> > Hallo, dein Ergebnis ist nicht korrekt, um den Fehler zu
> > finden, poste mal bitte deine Rechenschritte, Steffi
>  Vor allem lässt sich das Ergebnis selbst durch zwei
> stinknormale Dreiecksflächenberechnungen ohne
> Integralrechnung bestätigen  bzw. widerlegen.
>  Gruß Abakus
>  

Das sowieso, aber das wäre ja zu einfach ;-)
Ein kurzer Blick auf die Plausibilität des Ergebnisses kann in der Tat weiterhelfen.

Marius


Bezug
                
Bezug
Flächeninhalt bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:04 Sa 03.11.2012
Autor: abakus


>
> > Geben Sie den Flächeninhalt an, der von der Funktion
> > f(x)=4x+1 und der x-Achse im Intervall von -1 bis 2
> > eingeschlossen wird.
>  >  Hallo erstmal,
>  >  
> > da muss ich ganz ehrlich sagen. Da hab ich nicht mal einen
> > Ansatz. Als Tipp stand da noch, man könnte die
> > Stammfunktion zuerst aufstellen.
>  >  
> > [mm]F(x)=8x^{2}+x[/mm]

Diese Stammfunktion (bzw. der Faktor 8) ist falsch.
Gruß Abakus  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]