matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungFlächeninhalt Vektorendreiecks
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Flächeninhalt Vektorendreiecks
Flächeninhalt Vektorendreiecks < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt Vektorendreiecks: Tipp für Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 12:31 So 12.03.2006
Autor: taurec

Aufgabe
2.) Gegeben sind die punkte A  [mm] \vektor{4 \\ 1 \\ 1} [/mm] B [mm] \vektor{-2 \\ 3 \\ 0} [/mm] C [mm] \vektor{1-2t \\ t \\ 3} [/mm]
a) Weise nach, dass für jedes t die punkte A,B,C ein Dreieck bilden.
(ja sie bilden ein Dreieck da sie linear unabhängig sind)
b) Berechne in Abhängigkeit von t die maßzahl A(t) des Flächeninhaltes des Dreiecks ABC. ( A= 3/2 *  [mm] \wurzel{ t^2 + 2t +42} [/mm]

Also A= 1/ 2 g h
g= | [mm] \overrightarrow{AB} [/mm] |=|  [mm] \vektor{-6 \\ 2\\ -1}|= \wurzel{41} [/mm]

d=h=    [mm] \bruch{| [ \vektor{4 \\ 1\\ 1} - \vektor{1-2t \\ t\\ 3}] * \vektor{6 \\ -2\\ 1}| }{\wurzel{41}} [/mm] =   [mm] \bruch{| \vektor{3+2t \\ 1-t\\ -2 } * \vektor{6 \\ -2 \\ 1}}{\wurzel{41}} [/mm]

So weit so gut. d=  [mm] \bruch{| 18+12t-2+2t-2 |}{\wurzel{41}} [/mm]
Dann wäre A= 1/ 2 | 14 +14t| was aber nicht stimmt nach der Lösungsvorgabe.

Danke für die Hilfe.
( Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)


        
Bezug
Flächeninhalt Vektorendreiecks: falsche Flächenformel
Status: (Antwort) fertig Status 
Datum: 12:38 So 12.03.2006
Autor: Loddar

Hallo taurec!


Ich bin jetzt die Lösung nicht weiter durchgegangen. Aber die Flächenformel für ein Dreieck lautet:

[mm] $A_{\Delta} [/mm] \ = \ [mm] \bruch{1}{\red{2}}*g*h_g$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Flächeninhalt Vektorendreiecks: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:49 So 12.03.2006
Autor: taurec

ich versuchs mal mit 1/2 | AB x AC|

1/2 |  [mm] \vektor{-6 \\ 2\\ -1 } [/mm] x  [mm] \vektor{-3-2t \\ t-1\\2 } [/mm] = 1/2  [mm] \vektor{ 3+t \\ 2t+15\\ -2t+12 } [/mm]
= 1/2  [mm] \wurzel{( 3+t )^2 +(2t+15)^2 +( -2t +12 )^2} [/mm]
= 1/2  [mm] \wurzel{ 9t^2 + 18t + 378} [/mm]

Und schließlich: 3* [mm] \bruch{1}{2} \wurzel{ t^2 + 2t + 42} [/mm]


Danke für die Hilfe.  (   Korrigiert )

Bezug
        
Bezug
Flächeninhalt Vektorendreiecks: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 So 12.03.2006
Autor: Fugre

Hallo Taurec,

also zunächst einmal zur Aufgabe a). Die Begründung ist nicht ganz richtig, entscheidend ist,
dass die drei Punkte nicht auf einer Geraden liegen. Um die Fläche des Dreiecks zu berechnen
bietet es sich das Kreuzprodukt an, wie du auch in deiner Mitteilung schreibst.
[mm] $A=\frac{1}{2}*|\overrightarrow{AB} \times \overrightarrow{AB}|$ [/mm] mit [mm] $\overrightarrow{AB}= \vektor{-6 \\ 2 \\ -1}$ [/mm] und [mm] $\overrightarrow{AC}= \vektor{-3-2t \\ t-1 \\ 2}$ [/mm]
[mm] $A=\frac{1}{2}|\vektor{4+(t-1) \\ -(-12+(-3-2t)) \\ -6(t-1)-2(-3-2t)}|=\frac{1}{2}|\vektor{3+t \\ 15+2t \\ 12-2t}|$ [/mm]
[mm] $=\frac{1}{2}\sqrt{(3+t)^2 + (15+2t)^2 +(12-2t)^2}$ [/mm]
[mm] $=\frac{1}{2}\sqrt{9t^2+18t+378}=...$ [/mm]


Gruß
Nicolas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]