matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFlächeninhalt
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Flächeninhalt
Flächeninhalt < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Sa 05.05.2007
Autor: Nicole20

Hallo, kann mir jemand etwas erklären?

Wie bestimmt man den Flächeninhalt einer Menge?

zum Beispiel hierbei:

b>0
[mm] M={(x,y)\varepsilon\IR² | 0 \le x \le b, |y| \le x*exp(x)} [/mm]



        
Bezug
Flächeninhalt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Sa 05.05.2007
Autor: condoleo


> b>0
> [mm]M={(x,y)\varepsilon\IR² | 0 \le x \le b, |y| \le x*exp(x)}[/mm]

Also ich würde einfach [mm] \integral_{0}^{b}x* e^x\, [/mm] dx bestimmen.

LG
condoleo  



Bezug
                
Bezug
Flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:54 Sa 05.05.2007
Autor: Nicole20

ok gut dachte ich mir schon und dann brauche ich ja die Stammfunktion von x*exp(x) nicht wahr?

Lautet die zufällig [mm] F(x)=e^{x+x} [/mm]   ???

Bezug
                        
Bezug
Flächeninhalt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Sa 05.05.2007
Autor: schachuzipus

Hallo Nicole,

nein, leite mal [mm] e^{2x} [/mm] ab, da kommt nicht [mm] x\cdot{}e^x [/mm] raus

Das Integral [mm] \int{xe^xdx} [/mm] kannst du mittels partieller Integration ermitteln.

Setze dazu x=u(x) und [mm] e^x=v'(x) [/mm]


LG

schachuzipus

Bezug
                                
Bezug
Flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Sa 05.05.2007
Autor: Nicole20

ok hab ich probiert aber ich weiß nicht ob ich mit der partiellen integration so gut klar komme.
Kommt da dann folgendes raus:

[mm] b*e^{b} [/mm] + [mm] \integral_{0}^{b}{1*e^{x} dx} [/mm]

Bezug
                                        
Bezug
Flächeninhalt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:25 Sa 05.05.2007
Autor: Nicole20

hab mich vertan glaube da kommt ein + an stelle von -

Bezug
                                                
Bezug
Flächeninhalt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:26 Sa 05.05.2007
Autor: condoleo

Na dann stimmt es ;o)

Bezug
                                        
Bezug
Flächeninhalt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 Sa 05.05.2007
Autor: schachuzipus

Hallo Nicole,

du hast nen VZF vor dem Integral eingebaut.

Außerdem kannste das Integral ja auch berechnen.

Also [mm] \int\limits_{0}^b{xe^xdx}=xe^x\red{-}\int\limits_{0}^b{e^xdx}=\left[xe^x-e^x\right]_0^b=\left[e^x(x-1)\right]_0^b=e^b(b-1)+1 [/mm]


LG

schachuzipus

Bezug
                                                
Bezug
Flächeninhalt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:31 Sa 05.05.2007
Autor: Nicole20

super klasse und danke :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]