matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenFlächenbestimmung durch Vektor
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Vektoren" - Flächenbestimmung durch Vektor
Flächenbestimmung durch Vektor < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenbestimmung durch Vektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:27 Mo 12.05.2014
Autor: dstny

Aufgabe
Berechne den Flächeninhalt des Dreiecks ABC
A(5|-2|1)
B(0|3|4)
C(-4|1|5)

Also ich hätte eine Frage bezüglich der Flächenberechnung eines Dreiecks mithilfe von 3 vorgegebenen Punkten im 3-Dimensionalen Bereich bzw. ich weiß nicht wie ich ich so recht auf die Lösung komme.. bisher sieht es so aus

Ich habe jetzt mithilfe der Punkte A, B und C erst mal die Vektoren und Seitenlängen des Dreiecks bestimmt:
[mm] \overline{a}=\overline{BC}=\pmat{ -4 \\ -2 \\ 1 } [/mm]
[mm] \overline{b}=\overline{AC}=\pmat{ -9 \\ 3 \\ 4 } [/mm]
[mm] \overline{c}=\overline{AB}=\pmat{ -5 \\ 5 \\ 3 } [/mm]

Davon habe ich dann die Beträge ausgerechnet um die Seitenlängen herauszubekommen (Weiß nicht genau ob das notwendig ist)
a=4,58
b=10,3
c=7,68

Jetzt muss ich irgendwie die Fläche des Dreiecks berechnen.
Soweit ich weiß funktioniert das (irgendwie?) mit dem Vektor- / Kreuzprodukt..
Allerdings weiß ich nicht welche Vektoren ich dafür nehmen muss, und ob ich dann schon fertig bin.
Wäre nett wenn mir jemand dabei helfen könnte :)


        
Bezug
Flächenbestimmung durch Vektor: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Mo 12.05.2014
Autor: Diophant

Hallo,

> Berechne den Flächeninhalt des Dreiecks ABC
> A(5|-2|1)
> B(0|3|4)
> C(-4|1|5)
> Also ich hätte eine Frage bezüglich der
> Flächenberechnung eines Dreiecks mithilfe von 3
> vorgegebenen Punkten im 3-Dimensionalen Bereich bzw. ich
> weiß nicht wie ich ich so recht auf die Lösung komme..
> bisher sieht es so aus

>

> Ich habe jetzt mithilfe der Punkte A, B und C erst mal die
> Vektoren und Seitenlängen des Dreiecks bestimmt:
> [mm]\overline{a}=\overline{BC}=\pmat{ -4 \\ -2 \\ 1 }[/mm]

>

> [mm]\overline{b}=\overline{AC}=\pmat{ -9 \\ 3 \\ 4 }[/mm]

>

> [mm]\overline{c}=\overline{AB}=\pmat{ -5 \\ 5 \\ 3 }[/mm]

>

Das kann nicht schaden, je nach Vorgehensweise benötigst du jedoch nur zwei oder sogar nur eine der Seiten als Vektor.

> Davon habe ich dann die Beträge ausgerechnet um die
> Seitenlängen herauszubekommen (Weiß nicht genau ob das
> notwendig ist)
> a=4,58
> b=10,3
> c=7,68

Ich habe jetzt nicht nachgerechnet. Natürlich kann man mit irgendwelchen abgefahrenen Methoden arbeiten, hier wäre das die Heron-Formel. Dazuu bräuchtest du in der tat alle drei Seitenlängen und noch den halben Dreiecksumfang. Aber das hattest du wohl nicht vor. :-)

> Jetzt muss ich irgendwie die Fläche des Dreiecks
> berechnen.
> Soweit ich weiß funktioniert das (irgendwie?) mit dem
> Vektor- / Kreuzprodukt..

Es gibt unterschiedliche Methoden, auch in der Vektorrechnung. Eine davon ist das Kreuzprodzukt. Wie wäre es denn, wenn du dessen geometrische Eigenschaften einmal selbst []recherchieren würdest, denn dann hätte sich deine Frage nämlich im Handumdrehen geklärt. Welche Fläche wird denn durch den Betrag des Kreuzprodukts beschrieben?


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]