matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFlächenberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Flächenberechnung
Flächenberechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenberechnung: Berechnung des Inhaltes
Status: (Frage) beantwortet Status 
Datum: 15:30 Di 22.05.2007
Autor: Baschdl

Aufgabe
Berechnenen sie den Inhalt der Fläche, die vom Schaubild der Funbktion f: f(x)= -x² + 4x und der x-Achse eingeschlossen ist wird.
In welchem Verhältnis wird diese Fläche von der erswten Winkelhalbierende geteilt?

Wir haben dieses Themea gerade frisch angefangen. Verstehe aber leider absolut nichts. kann mir bei dieser aufgabe jemand helfen? danke

        
Bezug
Flächenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 Di 22.05.2007
Autor: Slartibartfast

Hallo Baschdl,

mal am Besten mal das Schaubild. Da kannst du dann deine gesuchte Fläche erkennen. Diese lässt sich mit dem Integral über die Funktion berechnen, als Grenzen nimmst du die Nullstellen.
Die WH kannst du ebenfalls einzeichnen, diese Teilt deine Fläche in zwei Teilflächen. Die sind wieder mit jeweils einem Integral zu berechnen (obwohl eine für das Problem ausreicht). Das Integral geht dann über "obere - untere Funktion", die Grenzen sind eine Nullstelle der Parabel und die Schnittstelle von Fkt und WH.
Dann noch das Verhältnis berechnen und fertig.

Viel Spaß beim Rechnen.

Bezug
                
Bezug
Flächenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:05 Di 22.05.2007
Autor: Baschdl

ok, danke für den tipp, dann mach ich mich gleich mal ran.

Bezug
                        
Bezug
Flächenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:03 Mi 23.05.2007
Autor: Baschdl

Aufgabe
  Berechnenen sie den Inhalt der Fläche, die vom Schaubild der Funbktion f: f(x)= -x² + 4x und der x-Achse eingeschlossen ist wird.

=> Ergebnis A: 160/3

In welchem Verhältnis wird diese Fläche von der ersten Winkelhalbierende geteilt?

Kann mir noch mal einer erklären, wie man das mit der ersten winkelhalbierenden macht.

Bezug
                                
Bezug
Flächenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:14 Mi 23.05.2007
Autor: M.Rex

Hallo.

Hier gilt es, die Fläche zwischen f(x) und h(x)=x zu berechnen. (farbig markiert)

[Dateianhang nicht öffentlich]

Also zuerst mal die Schnittstellen.

-x²+4x=x
[mm] \gdw x_{1}=0, x_{2}=3 [/mm]

Also:

[mm] A=\integral_{0}^{3}f(x)-h(x)dx [/mm]

Marius

Dateianhänge:
Anhang Nr. 1 (Typ: jpeg) [nicht öffentlich]
Bezug
                                        
Bezug
Flächenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:30 Mi 23.05.2007
Autor: Baschdl

Dankeschön für deine bemühungen. Habe es jetzt geschnallt

Bezug
                                                
Bezug
Flächenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:43 Mi 23.05.2007
Autor: Baschdl

Aufgabe
nochmals zu deiner Zeichnung:
Was ist den h(x)?

Ist h(x) einfach x?

Bezug
                                                        
Bezug
Flächenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:49 Mi 23.05.2007
Autor: M.Rex

Hallo.

Ich habe die erste Winkelhalbierende mal h(x)genannt.

Und damit ist dann h(x)=x.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]