Flächenberechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:55 Do 19.01.2006 | Autor: | Tobi252 |
Aufgabe | "Für welchen Wert von c schließt der Graph der Funktion f mit der Parabel zu g(x) =
x² eine Fläche der Maßzahl A(F) ein?"
a) f(x)= c ; A(F)=36 |
Hallo, ich benötige mal ein wenig Hilfe bei einer Augabe. Leider kann ich keinen Anfang machen, weil ich absolut keine Ahnung habe wie beginnen soll. Insgesammt sind es zwei Aufgaben aber ich werde nur eine posten damit ich bei der zweiten Aufgabe dann mein hoffentlich neuerlentes Wissen selbst anwenden kann.
Hinweis: Bitte die Zwischenschritte erklären *
-Ich bedanke mich schon mal im voraus für die (möglichen) Antworten.
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.mathe-profis.de/forum/thread.php?threadid=1510&sid=
|
|
|
|
Hallo Tobi252,
> "Für welchen Wert von c schließt der Graph der Funktion f
> mit der Parabel zu g(x) =
> x² eine Fläche der Maßzahl A(F) ein?"
Zuerst bestimmen wir die Stellen, wo sich [mm]f[/mm] und [mm]g[/mm] schneiden:
[mm]f(x) = g(x) \gdw c = x^2 \Rightarrow \left(x_0 = -\sqrt c \vee x_1 = \sqrt c\right)[/mm]
Da [mm]g[/mm] [mm]y\texttt{--Achsen-symmetrisch}[/mm] ist, reicht es
[mm]2\int_0^{\sqrt c}{x^2 \mathrm{d}x}[/mm] zu bestimmen.
Ok, ich hätte die Aufgabenstellung nicht "überfliegen" sollen.
Natürlich ist hier die obere Fläche gemeint. Ich löse es jetzt mal allgemein... Wir ziehen die obige Fläche also von dem Rechteck unter [mm]f[/mm] im Intervall [mm]\left[-\sqrt c, \sqrt c\right][/mm] ab. Die Intervalllänge ist die Breite des Rechtecks und [mm]f(x) = c[/mm] seine Höhe. Damit erhalten wir für [mm]A[/mm]:
[mm]2\sqrt c c - 2\int_0^{\sqrt c}{x^2 \mathrm{d}x} = 2\left(\sqrt c c - \frac{c^{3/2}}{3}\right) = A \gdw \frac{3}{2}A = 3\sqrt c c - \sqrt{c}^3 = \sqrt c\left(3c - c\right) = 2c\sqrt c \gdw c\sqrt c = c^{3/2} = \frac{3}{4}A \gdw c = \sqrt[3]{\frac{9}{16}A^2}[/mm]
Jetzt nur noch den Wert für [mm]A[/mm] einsetzen und fertig.
Viele Grüße
Karl
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:04 Do 19.01.2006 | Autor: | Tobi252 |
Erstmal danke für deine Antwort aber ich hab noch zwei Fragen. Erst einmal wie kamst du auf den Wert 9 ? Und dann weiß ich jetzt ehrlich gesagt nicht wie ich hier bei dem Integral 2 ... (kann das jetzt nicht weiter schreiben, weil ich nicht weiß wie das geht ) wie ich da jetzt weiter rechne.
Ich bin das eigentlich nur gewohnt mit Zahlen zu rechnen und nicht mit Variablen und ich weiß jetzt nicht wie ich das rechnen soll.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:36 Do 19.01.2006 | Autor: | Tobi252 |
*Peinlich*, sehe gerade, dass ich g mit ner 9 verwechselt habe. Die Zahl und der Buchstabe sahen sich nämlich in deinen Post so ähnlich. Danke für die Antwort.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:19 Fr 20.01.2006 | Autor: | leduart |
Hallo Tobi
Wenn du dir eine Zeichnung machst, siehst du, dass karl sich geirrt hat. Die eingeschlossene Fläche ist nicht die unter der Parabel, die man mit dem Integral ausrechnet. Du musst das Ergebnis von dem Rechteck der Höhe c und Breite [mm] 2*\wurzel{c} [/mm] abziehen, oder ausrechnen :
2* [mm] \integral_{0}^{\wurzel{c}} [/mm] {(c [mm] -x^{2})dx}.
[/mm]
Gruss leduart
|
|
|
|