matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFlächen oberhalb & unterhalb
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Flächen oberhalb & unterhalb
Flächen oberhalb & unterhalb < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächen oberhalb & unterhalb: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Do 15.11.2007
Autor: MatheNietchen

Aufgabe
Die Funktion f(c)=x³-cx-1; a=0; b=2 hat bei geeigneter Wahl vonc im Intervall [a;b] genau eine Nullstelle x0. Der Graph von fc, die x-Achse sowie die Geraden mit den Gleichungen x=a und x=b begrenzen eine Fläche, die aus zwei Teilen besteht. Bestimmen Sie c so, dass die beiden Teilflächen denselben Inhalt haben.

Hallo!
Muss ich hier einfach a und b für x einsetzen und dann hab ich mein Integral?

        
Bezug
Flächen oberhalb & unterhalb: Antwort
Status: (Antwort) fertig Status 
Datum: 18:14 Do 15.11.2007
Autor: Steffi21

Hallo,

wir haben eine Nullstelle [mm] x_0, [/mm] somit hast du das Integral von 0 bis [mm] x_0 [/mm] und das Integral von [mm] x_0 [/mm] bis 2, die 1. Fläche liegt unterhalb der x-Achse, wir müssen das Integral in Betragsstriche setzen oder ein minus davor:

[Dateianhang nicht öffentlich]

[mm] -\integral_{0}^{x_0}{x^{3}-cx-1 dx}=\integral_{x_0}^{}{x^{3}-cx-1 dx} [/mm]

die Auflösung bringt dein c, hast du c, so kannst du die Nullstelle berechnen,

Steffi



Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Flächen oberhalb & unterhalb: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:33 Do 15.11.2007
Autor: MatheNietchen

Was ist den xO? was muss ich dafür einsetzen?

Bezug
                        
Bezug
Flächen oberhalb & unterhalb: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Do 15.11.2007
Autor: Steffi21

Hallo, ich hatte es vorhin ja schon gesagt, [mm] x_0 [/mm] ist deine Nullstelle, im Moment kennst du sie noch nicht, [mm] x_0 [/mm] ist somit auch eine untere bzw. obere Grenze, rechne damit, als wenn es eine Zahl wäre, also einsetzen, du wirst merken es passiert etwas wunderbares, Überraschung, und somit kommst du dann an dein c,

Steffi

Bezug
                                
Bezug
Flächen oberhalb & unterhalb: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 Do 15.11.2007
Autor: MatheNietchen

Dann rechne ich wie folgt:
[mm] |\integral_{0}^{x0}{F= 1/4 x^4- 1/2cx²}| [/mm] = [mm] \integral_{x0}^{2}{F= 1/4 x^4- 1/2cx²} [/mm]
setze ein
[mm] \integral_{0}^{x0}{(F= 1/4 x0^4- 1/2cx0²)-(0)}= \integral_{x0}^{2}{(F= 1/4*(2)^4- 1/2c(2)²)-(F= 1/4 x0^4- 1/2cx0²)} [/mm]

dumme frage: fällt x0 weg?

Bezug
                                        
Bezug
Flächen oberhalb & unterhalb: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Do 15.11.2007
Autor: MontBlanc

Hi,

also wir haben die gleiche Aufgabe als hausuafgabe aufbekommen und ich habe mMn einen eleganteren Weg gefunden und zwar so:

du hast wie schon beschrieben, die beiden integrale, da die Flächen gleich groß sein sollen und oberhalb sowie unterhalb der x-Achse liegen, kannst du die intervalladditivität des Integrals ausnutzen, denn:

[mm] \integral_{a}^{b}{f(x) dx}+\integral_{b}^{c}{f(x) dx}=\integral_{a}^{c}{f(x) dx} [/mm]

In deinem Fall:

[mm] \integral_{0}^{x_{0}}{f(x) dx}+\integral_{x_{0}}^{2}{f(x) dx} [/mm] . Da die Flächen - wie schon gesagt oberhalb und unterhalb liegen UND gleich groß sind, kannst du das zusammenfassen:

[mm] \integral_{0}^{2}{f(x) dx}=0 [/mm]

Wie schon beschrieben gleich Null, wegen oberhalb und unterhalb,dann bekommst du c=1 heraus.
Lg :)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]