matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFlächen Berechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Flächen Berechnung
Flächen Berechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächen Berechnung: Korrektur und Tipp
Status: (Frage) beantwortet Status 
Datum: 13:58 Di 15.07.2014
Autor: Sema4Ever

Aufgabe
Die Funktionen f(x)= [mm] (x-1)^2 [/mm] , g(x)= [mm] -\bruch{1}{x-1} (x\not=1) [/mm] und (x)=4

mit [mm] x\ge [/mm] 0 begrenzen im 1. Quadranten eine Fläche. Skizzieren Sie den Sachverhalt und berechnen Sie den Inhalt dieser Fläche.

Hallo,

Ich habe zuerst eine Skizze gemacht und dann habe ich die Funktion g(x)=4 gesetzt und die x stelle herausgefunden also den Grenzwert [mm] \bruch{3}{4}. [/mm]
Ich weiss jetzt nicht ob meine Integralgleichung stimmt und ob die Grenzwerte stimmen.

A= [mm] \integral_{0}^{\bruch{3}{4}}{(x-1)^2 dx} [/mm] + [mm] \integral_{\bruch{3}{4}}^{1}{-\bruch{1}{x-1}dx} [/mm]
Danke im Voraus.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Flächen Berechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:13 Di 15.07.2014
Autor: M.Rex

Hallo

> Die Funktionen f(x)= [mm](x-1)^2[/mm] , g(x)= [mm]-\bruch{1}{x-1} (x\not=1)[/mm]
> und (x)=4

>

> mit [mm]x\ge[/mm] 0 begrenzen im 1. Quadranten eine Fläche.
> Skizzieren Sie den Sachverhalt und berechnen Sie den Inhalt
> dieser Fläche.
> Hallo,

>

> Ich habe zuerst eine Skizze gemacht und dann habe ich die
> Funktion g(x)=4 gesetzt und die x stelle herausgefunden
> also den Grenzwert [mm]\bruch{3}{4}.[/mm]

Du meinst die Integrationsgrenzen, der Grenzwert ist etwas komplett anderes.
Du musst definitiv lernen, sorgfältiger zu formulieren.

> Ich weiss jetzt nicht ob meine Integralgleichung stimmt
> und ob die Grenzwerte stimmen.

>

> A= [mm]\integral_{0}^{\bruch{3}{4}}{(x-1)^2 dx}[/mm] +
> [mm]\integral_{\bruch{3}{4}}^{1}{-\bruch{1}{x-1}dx}[/mm]

Das stimmt so nicht.

[Dateianhang nicht öffentlich]

[mm] A_{blau}=\underbrace{\int\limits_{0}^{\frac{3}{4}}-\frac{1}{x-1}-(x-1)^{2}dx}_{A_{dunkelbl}}+\underbrace{\int\limits_{\frac{3}{4}}^{3}4-(x-1)^{2}dx}_{A_{hellbl}} [/mm]

Marius

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Flächen Berechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:24 Di 15.07.2014
Autor: Sema4Ever

Ist denn hier dein Ergebnis A= [mm] 6-ln(\bruch{1}{4}) [/mm] FE?

Bezug
                        
Bezug
Flächen Berechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 Di 15.07.2014
Autor: M.Rex


> Ist denn hier dein Ergebnis A= [mm]6-ln(\bruch{1}{4})[/mm] FE?

Das sieht in der Tat gut aus.

Marius


Bezug
                        
Bezug
Flächen Berechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Di 15.07.2014
Autor: rmix22


> Ist denn hier dein Ergebnis A= [mm]6-ln(\bruch{1}{4})[/mm] FE?

Warum rechnest du es nicht einfach nach wenn dir M.Rex schon den kompletten Ansatz vorgibt?

Im Übrigen wäre [mm]6+ln(4)[/mm] hübscher.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]