matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFläche vierteln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Fläche vierteln
Fläche vierteln < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fläche vierteln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 Do 06.12.2007
Autor: MontBlanc

Aufgabe
Gegeben ist die Funktion f mit [mm] f(x)=x^{4}-4,25x^{2}+1. [/mm]

Teilen Sie die Fläche im vierten Quadranten durch eine Parallele mit der x und eine Parallele mit der y-Achse in 4 gleichgroße Teile.

Hi,

es wäre schön, wenn mal jemand über meine Lösung drüber schaut:

Also zuerst habe ich die Nullstellen bestimmt:

$ f(x)=0 [mm] \gdw x_{1}=-2 x_{2}=-0,5 x_{3}=0,5 x_{4}=2 [/mm] $

Dann die Fläche bestimmt, die im vierten Quadranten liegt:

[mm] \left|\integral_{0,5}^{2}{f(x) dx}\right|=\bruch{261}{80} [/mm]

Nun halbiere ich die Fläche erstmal durch eine Parallele zur y-Achse, also:

[mm] \left|\integral_{0,5}^{b}{f(x) dx}\right|=\bruch{261}{160} [/mm]

dabei gibt es fünf Lösungen für b wovon aber nur [mm] b\approx1,37 [/mm] im Intervall liegt.

Nun halbiere ich die halbe Fläche wieder durch eine Parallele zur x-Achse, ich nenne sie mal y=a.
Dafür bestimme ich die Schnittpunkte mit f(x):

f(x)=a

[mm] x_{1}=-\wurzel{2,125-\wurzel{a+3,515625}} [/mm]
[mm] x_{2}=\wurzel{2,125-\wurzel{a+3,515625}} [/mm]
[mm] x_{3}=-\wurzel{2,125+\wurzel{a+3,515625}} [/mm]
[mm] x_{4}=\wurzel{2,125+\wurzel{a+3,515625}} [/mm]

[mm] x_{2} [/mm] ist die gesuchte Schnittstelle, sie liegt irgendwo zwischen 0,5 und 2.

Jetzt integriere ich wie folgt:


[mm] \integral_{x_{2}}^{b}{f(x) dx}=\bruch{261}{320} [/mm]

[mm] a\approx-3,013. [/mm]

D.h. für [mm] x\approx1,37 [/mm] und [mm] y\approx-3,013 [/mm] wird die Fläche geviertelt.

Ich hoffe das ist soweit richtig.

Lg,

exeqter

        
Bezug
Fläche vierteln: Antwort
Status: (Antwort) fertig Status 
Datum: 15:04 So 09.12.2007
Autor: informix

Hallo eXeQteR,

> Gegeben ist die Funktion f mit [mm]f(x)=x^{4}-4,25x^{2}+1.[/mm]
>  
> Teilen Sie die Fläche im vierten Quadranten durch eine
> Parallele mit der x und eine Parallele mit der y-Achse in 4
> gleichgroße Teile.

ganz schön knifflig... ! ;-)

>  Hi,
>  
> es wäre schön, wenn mal jemand über meine Lösung drüber
> schaut:
>  
> Also zuerst habe ich die Nullstellen bestimmt:
>  
> [mm]f(x)=0 \gdw x_{1}=-2 x_{2}=-0,5 x_{3}=0,5 x_{4}=2[/mm]
>  
> Dann die Fläche bestimmt, die im vierten Quadranten liegt:
>  
> [mm]\left|\integral_{0,5}^{2}{f(x) dx}\right|=\bruch{261}{80}[/mm]
>  
> Nun halbiere ich die Fläche erstmal durch eine Parallele
> zur y-Achse, also:
>  
> [mm]\left|\integral_{0,5}^{b}{f(x) dx}\right|=\bruch{261}{160}[/mm]
>  
> dabei gibt es fünf Lösungen für b wovon aber nur
> [mm]b\approx1,37[/mm] im Intervall liegt.
>  
> Nun halbiere ich die halbe Fläche wieder durch eine
> Parallele zur x-Achse, ich nenne sie mal y=a.
>  Dafür bestimme ich die Schnittpunkte mit f(x):
>  
> f(x)=a
>  
> [mm]x_{1}=-\wurzel{2,125-\wurzel{a+3,515625}}[/mm]
>  [mm]x_{2}=\wurzel{2,125-\wurzel{a+3,515625}}[/mm]
>  [mm]x_{3}=-\wurzel{2,125+\wurzel{a+3,515625}}[/mm]
>  [mm]x_{4}=\wurzel{2,125+\wurzel{a+3,515625}}[/mm]
>  
> [mm]x_{2}[/mm] ist die gesuchte Schnittstelle, sie liegt irgendwo
> zwischen 0,5 und 2.
>  
> Jetzt integriere ich wie folgt:
>  
>
> [mm]\integral_{x_{2}}^{b}{f(x) dx}=\bruch{261}{320}[/mm]
>  
> [mm]a\approx3,013.[/mm]

kann nicht stimmen, weil die Parallele zur y-Achse jedenfalls durch den 4. Quadranten gehen muss: a<0 !
das x scheint zu stimmen.

>  
> D.h. für [mm]x\approx1,37[/mm] und [mm]y\approx3,013[/mm] wird die Fläche
> geviertelt.
>  

Ich habe das mal gezeichnet:
[Dateianhang nicht öffentlich]


Gruß informix

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Fläche vierteln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:29 Mo 10.12.2007
Autor: MontBlanc

Hi informix und danke für die Antwort,

ich habe das Vorzeichen vergessen, die antwort ist also a=-3,013.

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]