matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeFläche eines Dreiecks!
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Extremwertprobleme" - Fläche eines Dreiecks!
Fläche eines Dreiecks! < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fläche eines Dreiecks!: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:47 So 28.01.2007
Autor: Sypher

Aufgabe
Der Ursprung, der Punkt [mm] Q(u|p_{6}(u)) [/mm] und der Punkt [mm] R(u|x_{6}(u)) [/mm] sind für 0 < u < 6 die Eckpunkte eines Dreiecks.

Wie groß kann der Flächeninhalt des Dreiecks maximal sein?

[mm] p_{6}(x) [/mm] = [mm] -4x(\bruch{x}{t} [/mm] - 1) , x [mm] \in \IR [/mm]
[mm] f_{6}(x) [/mm] = [mm] 3x(\bruch{x}{t} [/mm] - 1)² , x [mm] \in \IR [/mm]

Hallo,

ich hab echt keine Ahnung wie das gehen soll !

Ich weiß aus der Formelsammlung, dass man die Fläche mit der Formel : A = [mm] \bruch{1}{2} [/mm] * a * [mm] h_{a} [/mm] , aber damit kann ich wirklich nichts anfangen.

Bräuchte dringend Hilfe.

Danke

MFG
Sypher

        
Bezug
Fläche eines Dreiecks!: Rückfragen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:53 Mo 29.01.2007
Autor: Roadrunner

Hallo Sypher!


Zum einen erscheinen mir in Deiner geposteten Aufgabenstellung so einige Ungereimtheiten ...


Soll das nicht [mm]R \ \left( \ u \ | \ \red{f}_{6}(u) \ \right)[/mm] heißen? Außerdem ist mir hier gerade nicht klar, ob das für den speziellen Fall $t \ = \ 6$ oder für allgemeines $t_$ gelöst werden soll.


Als ersten Lösungsansatz solltest Du Dir die beiden Funktion in ein Koordinatenkreuz einzeichnen und dazu ein entsprechendes Dreieck.

Daraus sollte man dann auch eine Grundseite $a_$ mit zugehöriger Höhe [mm] $h_a$ [/mm] erkennbar sein.


Gruß vom
Roadrunner


Bezug
                
Bezug
Fläche eines Dreiecks!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:39 Mo 29.01.2007
Autor: Sypher

Oh, das tut mir jetzt leid, ich meinte natürlich $ R \ [mm] \left( \ u \ | \ \red{f}_{6}(u) \ \right) [/mm] $

Somit bezieht es sich nur auf t = 6 !
Ich habe bereichts beide Graphen in ein Koordinaten-System gezeichnet, doch das bringt mich auch nicht weiter, genauso wenig die Formel für die Berechung eines beliebigen Dreiecks.

Danke

MFG
Sypher

Bezug
                        
Bezug
Fläche eines Dreiecks!: siehe unten!
Status: (Antwort) fertig Status 
Datum: 16:51 Mo 29.01.2007
Autor: Roadrunner

Hallo Sypher!


Siehe doch mal unten in riwe's Zeichnung. Die Grundseite $a_$ des gesuchten Dreieckes besteht doch aus der Strecke [mm] $\overline{B_1C_1}$ [/mm] . Die zugehörige Höhe [mm] $h_a$ [/mm] wird nun gebildet durch die strecke [mm] $\overline{AH} [/mm] \ = \  [mm] \overline{OH}$ [/mm] .

Setze hier nun die entsprechenden Funktiosnterme bzw. $u_$ ein ... und Du hast Deine Zielfunktion $A(u)_$ .


Gruß vom
Roadrunner


Bezug
        
Bezug
Fläche eines Dreiecks!: Antwort
Status: (Antwort) fertig Status 
Datum: 12:38 Mo 29.01.2007
Autor: riwe

addiere die flächen der beiden rechtwinkeligen dreiecke ober- und unterhalb der x-achse.
das gelbe gesamtdreieck symbolisiert das optimum

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Fläche eines Dreiecks!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:49 Di 30.01.2007
Autor: Sypher

Erst mal danke für eure Bemühungen!

Das Problem hat sich erledigt, hatte nur einen dummen Denkfehler : /

Die Aufgabe ist gar kein Problem mehr..

Ausserdem stimmt die Zeichnung nicht, denn bei [mm] f_{6}(x) [/mm] ist noch ein Quadrat bei der Klammer, falls es noch nicht bemerkt wurde ^^

Also danke nochmals,

MFG
Sypher

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]