matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeFläche Rechteck in Ellipse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Extremwertprobleme" - Fläche Rechteck in Ellipse
Fläche Rechteck in Ellipse < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fläche Rechteck in Ellipse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 Do 25.03.2010
Autor: itse

Aufgabe
Der Ellipse  [mm] 9x^2+16y^2=144 [/mm] soll ein möglichst großes Rechteck einbeschrieben werden, dessen Seiten parallel zu den Koordinatenachsen sind. Bestimmen Sie die Abmessungen des Rechtecks.

Hallo,

der Ellipse soll ein möglichst großes Rechteck einbeschrieben werden, also das Maximum der Reckteckfläche gesucht:

A(l,b) = l [mm] \cdot{} [/mm] b

Jedoch muss das Ganze noch einen Bezug zur Ellipse erhalten, die Seitenlängen der Ellipse sind ja [mm] \pm \wurzel{9} [/mm] (vertikal) und [mm] \pm \wurzel{16} [/mm] (waagerecht).

Mir geht es mehr um das Verständnis als um die Berechnung.

Ich muss ja Extrema suchen, müsste ich dazu nicht die Ellipsengleichung nach y auflösen, das Ergebnis ableiten und Null setzen, um auf eine Seitenlänge muss das Ergebnis noch mal 2 genommen werden.

Wenn dies stimmen sollte, wie kommt man auf diese Idee?

Ich habe als Seitenlänge waagerecht [mm] 2\wurzel{2} [/mm] und senkrecht [mm] \bruch{3}{\wurzel{2}}. [/mm] Als würde sich für die Fläche ergeben: A = 2* [mm] 2\wurzel{2}*2*\bruch{3}{\wurzel{2}} [/mm] = 24.

Besten Dank
itse

        
Bezug
Fläche Rechteck in Ellipse: halbe Ellipse?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:37 Fr 26.03.2010
Autor: ONeill

Hi!

> Jedoch muss das Ganze noch einen Bezug zur Ellipse
> erhalten

Zugegebenermassen hab ich von solchen Kriesfunktionen keine Ahnung, aber wie waere es, wenn Du Dir daraus eine halbe Ellipse machst. Dann haettest du eine stinknormale [mm] f_{(x)} [/mm] Funktion und koenntes dort dann das groesste Rechteck bestimmen und dann am Ende einfach den Wert verdoppeln?

Falls das moelgich ist, dann waere die Aufgabe so doch einfacher zu loesen.

Gruss Christian

Bezug
        
Bezug
Fläche Rechteck in Ellipse: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 Fr 26.03.2010
Autor: chrisno


> also das Maximum der Reckteckfläche
> gesucht:
>  
> A(l,b) = l [mm]\cdot{}[/mm] b

Ich schlage vor, anstelle von l zum Beispiel a zu wählen. l(L) und 1(eins) erscheinen hier gleich.

>  
> Jedoch muss das Ganze noch einen Bezug zur Ellipse
> erhalten,

[ok]

>die Seitenlängen der Ellipse sind ja [mm]\pm \wurzel{9}[/mm]

> (vertikal) und [mm]\pm \wurzel{16}[/mm] (waagerecht).

Das gibt Dir den Definitonsbereich für die Untersuchung an. Länger dürfen die Seiten des Rechtecks nicht werden. Weiterhin ist bei diesen Werten immer die andere Seitenlänge des Rechtecks Null, also die Fläche auch Null.

>  
> Ich muss ja Extrema suchen, müsste ich dazu nicht die
> Ellipsengleichung nach y auflösen, das Ergebnis ableiten
> und Null setzen,

Nein. Du willst eine Rechteckfläche maximal werden lassen. Also musst Du den Ausdruck für A ableiten usw..
Die Ellipse gibt Dir den Zusammenhang zwischen den beiden Seiten des Rechtecks vor. Aus $A(a,b) = a [mm] \cdot [/mm] b$ machst Du A(a), indem Du mit der Ellipsengleichung b durch a ersetzt.

> um auf eine Seitenlänge muss das Ergebnis
> noch mal 2 genommen werden.
>  

Symmetrien ausnutzen ist immer gut. Du brauchst das Ganze nur für ein Viertel der Ellipse durchzuführen.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]