matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenFläche 2. Ordnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Fläche 2. Ordnung
Fläche 2. Ordnung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fläche 2. Ordnung: lösungsproblem
Status: (Frage) beantwortet Status 
Datum: 17:27 Mo 08.12.2008
Autor: Skyler

Aufgabe
[mm] -x_1^2-x_2^2+2x_3^2+8x_1x_2-4x_1x_3+4x_2x_3-6x_1+12x_2-6=0 [/mm]


Transformieren SIe auf Normalform und bestimmen Sie den Flächentyp  

Hallo!

ALso nach Umformung komme ich auf folgendes:

[mm] A= \begin{pmatrix} -1 & 4 & -2 \\ 4 & -1 & 2 \\ -2 & 2 & 2 \end{pmatrix}[/mm]

und [mm] \vec b = \begin{pmatrix} -6 \\ 12 \\ 0 \end{pmatrix} [/mm]

Die EIgenwerte habe ich acuh bestimmt:


[mm] \gamma _1_,_2=3 [/mm] ; [mm] \gamma_3=-6 [/mm]

Diese stimmen auch.

Doch nun hakt es bei mir, wie ich weiter vorgehen soll, vllt fehlen mir auch einfach die Formeln bzw. ist mir ab nun das Schema unklar. SOll ich die EIgenvektoren ausrechnen? und dann? würde mich über ein paar  tipps von euch bedanken

liebe grüße skyler

        
Bezug
Fläche 2. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Mo 08.12.2008
Autor: MathePower

Hallo Skyler,

> [mm]-x_1^2-x_2^2+2x_3^2+8x_1x_2-4x_1x_3+4x_2x_3-6x_1+12x_2-6=0[/mm]
>  
>
> Transformieren SIe auf Normalform und bestimmen Sie den
> Flächentyp
> Hallo!
>  
> ALso nach Umformung komme ich auf folgendes:
>  
> [mm]A= \begin{pmatrix} -1 & 4 & -2 \\ 4 & -1 & 2 \\ -2 & 2 & 2 \end{pmatrix}[/mm]
>  
> und [mm]\vec b = \begin{pmatrix} -6 \\ 12 \\ 0 \end{pmatrix}[/mm]
>  
> Die EIgenwerte habe ich acuh bestimmt:
>  
>
> [mm]\gamma _1_,_2=3[/mm] ; [mm]\gamma_3=-6 [/mm]
>  
> Diese stimmen auch.
>  
> Doch nun hakt es bei mir, wie ich weiter vorgehen soll,
> vllt fehlen mir auch einfach die Formeln bzw. ist mir ab
> nun das Schema unklar. SOll ich die EIgenvektoren
> ausrechnen? und dann? würde mich über ein paar  tipps von
> euch bedanken


Ja, bestimme zunächst die Eigenvektoren.

Die Eigenvektoren zum Eigenwert [mm]\gamma_{k}[/mm] sind
genau die jenigen Vektoren, die im Kern[mm]\left(A-\gamma_{k}*I\right)[/mm] liegen.

Demnach Lösungsmenge des Systems

[mm]\left(A-\gamma_{k}*I\right)\overrightarrow{x}=\overrightarrow{0}[/mm]

, wobei I die Einheitsmatrix im [mm]\IR^{3}[/mm]

und [mm]\overrightarrow{x}=\pmat{x_{1} \\ x_{2} \\ x_{3}}}[/mm] ist.

Baue dann die gefundenen Eigenvektoren in eine Matrix T ein.

Die Matrix T sollte so geartet sein, daß [mm]T^{t}AT[/mm] eine Diagonalmatrix ergibt.


>  
> liebe grüße skyler


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]