matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitFkt indexierter Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Fkt indexierter Menge
Fkt indexierter Menge < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fkt indexierter Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:57 Do 07.10.2010
Autor: starik

Aufgabe
[mm] f(\bigcup_{i=1}^{I}S_{i})=\bigcup_{i=1}^{I}f(S_{i}) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Liebe Gemeinde,

habe als Hausaufgabe folgende Aufg. zu lösen und komme einfach nicht weiter.
Die Aufgabe ist: [mm] f(\bigcup_{i=1}^{I}S_{i})=\bigcup_{i=1}^{I}f(S_{i}) [/mm]

Meine Vorgehensweise wäre erst zu zeigen, dass [mm] f(\bigcup_{i=1}^{I}S_{i})\subseteq \bigcup_{i=1}^{I}f(S_{i}) [/mm]
was stimmt da [mm] f(S_{i})\subseteq f(\bigcup_{i=1}^{I}S_{i}) [/mm] für alle i aus I per Definition.

Dann komme ich aber nicht weiter, mir fehlt die Intuition (ist mein erster Beweis)...

Vielen Dank im Voraus!





        
Bezug
Fkt indexierter Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Do 07.10.2010
Autor: schachuzipus

Hallo starik,

> [mm]f(\bigcup_{i=1}^{I}S_{i})=\bigcup_{i=1}^{I}f(S_{i})[/mm]
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>
> Liebe Gemeinde,
>
> habe als Hausaufgabe folgende Aufg. zu lösen und komme
> einfach nicht weiter.
> Die Aufgabe ist:
> [mm]f(\bigcup_{i=1}^{I}S_{i})=\bigcup_{i=1}^{I}f(S_{i})[/mm]

Du solltest dazu sagen, wie f definiert ist, was die [mm]S_i[/mm] sind ... - sprich: den GENAUEN Aufgabentext wiedergeben.

Außerdem ist das eine komische Schreibweise: eher [mm]f\left(\bigcup\limits_{i\in I}S_i\right) \ = \ \bigcup\limits_{i\in I}f(S_i)[/mm]

>
> Meine Vorgehensweise wäre erst zu zeigen, dass
> [mm]f(\bigcup_{i=1}^{I}S_{i})\subseteq \bigcup_{i=1}^{I}f(S_{i})[/mm]


>
> was stimmt da [mm]f(S_{i})\subseteq f(\bigcup_{i=1}^{I}S_{i})[/mm]
> für alle i aus I per Definition.
>
> Dann komme ich aber nicht weiter, mir fehlt die Intuition
> (ist mein erster Beweis)...

Gerade zu Beginn solltest du dich genauestens an die Definitionen halten.

Die Idee, beide Mengeninklusionen zu zeigen, ist gut!

Zuerst [mm]\subset[/mm]

Zu zeigen ist, dass ein beliebiges [mm]y\in f\left(\bigcup\limits_{i\in I}S_i\right)[/mm] gefälligst auch in [mm]\bigcup\limits_{i\in I}f(S_i)[/mm] ist

Machen wir das:

Sei also [mm]y\in f\left(\bigcup\limits_{i\in I}S_i\right)[/mm] beliebig

[mm]\Rightarrow \exists x\in \bigcup\limits_{i\in I}S_i \ : \ f(x)=y[/mm]

Und wenn [mm]x[/mm] in der Vereinigung all dieser [mm]S_i[/mm] liegt, so liegt es wenigstens in einem der [mm]S_i[/mm], also

[mm]\Rightarrow \exists j\in I \ : \ x\in S_j[/mm]

[mm]\Rightarrow f(x)=y\in f(S_j)[/mm]

Also liegt y in einem der [mm]f(S_i)[/mm], nämlich in [mm] $f(S_j)$, [/mm] damit auch in der Vereinigung aller, dh.

[mm]\Rightarrow y\in\bigcup\limits_{i\in I}f(S_i)[/mm]

So in etwa ist das gemeint, nun versuche mal die andere Inklusion [mm]\supset[/mm] (auch möglichst an die Definitionen halten ...)

>
> Vielen Dank im Voraus!
>

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]