Fkt. partiell diffbar, stetig? < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | [mm] $f:\IR^{2}\to\IR, f(x,y):=\begin{cases}\frac{x^{3}y-xy^{3}}{x^{2}+y^{2}}, (x,y)\not= (0,0)\\ 0, (x,y) = (0,0)\end{cases}$.
[/mm]
a) Zeige, dass f auf ganz [mm] \IR^{2} [/mm] zweimal partiell diffbar ist.
b) Zeige, dass f und Gradient(f) stetig auf [mm] \IR^{2} [/mm] sind. |
Hallo!
Zu beiden Aufgaben habe ich Fragen.
---> Zu a):
Ich nehme an, dass der Fall [mm] (x,y)\not=(0,0) [/mm] klar ist. Wenn ich nach x partiell ableite, so kann dies interpretiert werden als Ableiten einer Funktion [mm] \overline{f}:\IR\to\IR, [/mm] die ohnehin nur von x abhängt. Dann ergeben die Rechenregeln für Differenzierbarkeit in [mm] \IR [/mm] die partielle Differenzierbarkeit nach x, usw.
Für den Fall (x,y) = (0,0) zeige ich das elementar:
[mm] $\frac{\partial f}{\partial x} [/mm] = [mm] \lim_{h\to 0}\frac{f(0+h,0)-f(0,0)}{h} [/mm] = [mm] \lim_{h\to 0}\frac{0-0}{h} [/mm] = 0$.
Das andere wäre dann alles analog. Geht das so?
---> Zu b):
Im Fall [mm] (x,y)\not= [/mm] (0,0) kann man ja wieder argumentieren, dass es sich einfach um eine Komposition stetiger Funktionen handelt, oder? Nun kommt der Fall (x,y) = (0,0). Sei [mm] \vektor{x_{n}\\y_{n}}_{n\in\IN} [/mm] eine Folge mit [mm] \vektor{x_{n}\\y_{n}}\to \vektor{0\\0}. [/mm] Dann gilt:
[mm] $f(\vektor{x_{n}\\y_{n}}) [/mm] = [mm] \frac{x_{n}^{3}*y_{n} - x_{n}*y_{n}^{3}}{x_{n}^{2}+y_{n}^{2}} [/mm] = [mm] x_{n}*y_{n}*\left(\frac{x_{n}^{2} - y_{n}^{2}}{x_{n}^{2}+y_{n}^{2}}\right)$
[/mm]
Man "sieht" zwar irgendwie, dass das wohl gegen 0 geht, aber beweisen kann ich's nicht. Wie muss ich hier vorgehen?
(Darf man Polarkoordinaten benutzen? - dürfte man das auch im [mm] \IR^{3}, [/mm] weil die Kugelkoordinaten ja keine bijektive Transformation mehr auf die gesamte Kugeloberfläche sind...)
Vielen Dank für Eure Hilfe!
Grüße,
Stefan
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:48 Do 03.06.2010 | Autor: | skoopa |
Hallo Stefan!
Kannst du für die b) das ganze nicht betragsmäßig nehmen und abschätzen, also:
[mm] |f(\vektor{x_{n}\\y_{n}})| [/mm] = [mm] \frac{|x_{n}^{3}\cdot{}y_{n} - x_{n}\cdot{}y_{n}^{3}|}{|x_{n}^{2}+y_{n}^{2}|} [/mm] = [mm] |x_{n}\cdot{}y_{n}|\cdot{}\left(\frac{|x_{n}^{2} - y_{n}^{2}|}{|x_{n}^{2}+y_{n}^{2}|}\right)\le|x_{n}\cdot{}y_{n}|\to [/mm] 0 [mm] (n\to\infty)
[/mm]
Das müsste ja gelten, da: [mm] |x_{n}^2-y_{n}^2|\le|x_{n}^2+y_{n}^2|
[/mm]
Das wäre zumindest mein Tipp, meine Vermutung.
Allerdings weiß ich nicht, ob das so richtig/erlaubt ist. (Deshalb das ganze auch nur als Mitteilung)
Viele Grüße!
skoopa
|
|
|
|
|
Danke skoopa,
ja, das ist erlaubt. Danke!
Grüße,
Stefan
|
|
|
|
|
Danke für den Link
Grüße,
Stefan
|
|
|
|