matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Fixpunktsatz Banach
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Fixpunktsatz Banach
Fixpunktsatz Banach < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunktsatz Banach: Tipps, Korrektur, Hilfe
Status: (Frage) beantwortet Status 
Datum: 13:28 Mo 23.04.2012
Autor: Count123

Aufgabe
Es sei M [mm] \subset \IR^{n}eine [/mm] abgeschlossene Menge. Für F : M -> M gelte:
Es gibt ein K < 1/2 , so dass für alle x, y [mm] \in [/mm] M gilt:
||F(x) − F(y)|| [mm] \le [/mm] K (||F(x) − x|| + ||F(y) − y||)
Zeigen Sie: F besitzt genau einen Fixpunkt in M (12 Punkte)

Hallo :-)


Da die Aufgabe recht viele Punkte gibt, habe ich iwie den Eindruck, als wäre mein Ansatz zu leicht :D

Im Prinzip reicht es doch aus, lediglich die Voraussetzungen des F.P.S. von Banach zu überprüfen. Aufgrund der Vollständigkeit des [mm] \IR^{n} [/mm] und der Abgeschlossenheit von M, ist M als Teilmenge auch vollständig. Dass F eine Selbstabbildung ist, steht ja schon in der Aufgabenstellung. Zu überprüfen wäre doch eigentlich nur noch die Längenkontraktion?

Dazu müsste doch gelten (?):

K (||F(x) − x|| + ||F(y) − y||) [mm] \le [/mm] K* ||x-y||, wobei K* < 1 sein soll

Stimmt der Ansatz?

Wie könnte man da jetzt vllt am besten vorgehn?

Danke schonmal sehr im voraus :)

LG Count123


        
Bezug
Fixpunktsatz Banach: Antwort
Status: (Antwort) fertig Status 
Datum: 14:15 Mo 23.04.2012
Autor: fred97


> Es sei M [mm]\subset \IR^{n}eine[/mm] abgeschlossene Menge. Für F :
> M -> M gelte:
>  Es gibt ein K < 1/2 , so dass für alle x, y [mm]\in[/mm] M gilt:
>  ||F(x) − F(y)|| [mm]\le[/mm] K (||F(x) − x|| + ||F(y) − y||)
>  Zeigen Sie: F besitzt genau einen Fixpunkt in M (12
> Punkte)
>  Hallo :-)
>  
>
> Da die Aufgabe recht viele Punkte gibt, habe ich iwie den
> Eindruck, als wäre mein Ansatz zu leicht :D
>  
> Im Prinzip reicht es doch aus, lediglich die
> Voraussetzungen des F.P.S. von Banach zu überprüfen.
> Aufgrund der Vollständigkeit des [mm]\IR^{n}[/mm] und der
> Abgeschlossenheit von M, ist M als Teilmenge auch
> vollständig. Dass F eine Selbstabbildung ist, steht ja
> schon in der Aufgabenstellung. Zu überprüfen wäre doch
> eigentlich nur noch die Längenkontraktion?
>  
> Dazu müsste doch gelten (?):
>  
> K (||F(x) − x|| + ||F(y) − y||) [mm]\le[/mm] K* ||x-y||, wobei
> K* < 1 sein soll
>  
> Stimmt der Ansatz?

Daran dachte ich auch zuerst, habs aber nicht hinbekommen. Ich zweifle auch daran, dass das so geht.

Gehe doch vor , wie beim Beweis des  Banachschen Fuxpunktsatzes:

Sei [mm] x_0 \in [/mm] M und setze [mm] x_{n+1}:=F(x_n) [/mm]

1. Zeige Induktiv:

           [mm] ||x_{n+1}-x_n|| \le \bruch{K^n}{(1-K)^n}||x_1-x_0|| [/mm]

2. Zeige: [mm] (x_n) [/mm] ist eine Cauchyfolg, hat also einen Grenzwert m [mm] \in [/mm] M.

3. m ist Fixpunkt von F.

4. F hat genau einen Fixpunkt.

Wenn ich mich nicht vertan habe, geht alles gut durch.

FRED

>  
> Wie könnte man da jetzt vllt am besten vorgehn?
>  
> Danke schonmal sehr im voraus :)
>  
> LG Count123
>  


Bezug
                
Bezug
Fixpunktsatz Banach: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:04 Mo 23.04.2012
Autor: Count123

Danke sehr für deine Hilfe :-)

Kurze Frage..wie kommst du auf die Behauptung in Punkt 1?

LG Count123

EDIT: Hat sich geklärt..wurde mir später klar :) danke für die hilfe :)

Bezug
                        
Bezug
Fixpunktsatz Banach: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mi 25.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]