matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikFixpunktproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Numerik" - Fixpunktproblem
Fixpunktproblem < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunktproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:59 So 26.04.2009
Autor: georgb

Aufgabe
Sei f(x) [mm] =2x+1-\bruch{6}{x} [/mm]
a) Stellen sie das Fixpunktproblem für f(x) auf.
b) Berechnen sie alle Fixpunkte exakt.
c)Formulieren  sie das Fixpunkt- in das äquivalente Nullstellenproblem um und lösen Sie  auch dieses exakt!
d) Wie sieht die zu diesem  äquivalenten Nullstellenproblem gehörige  rekursive Definition der Newton-Rapheon-Iteration zur Nullstellenbestimmung aus?
Lösen Sie dabei, wenn vorhanden, alle Doppelbrüche auf!

Ich hoffe ihr konnt mir helfen. Solch ein Bsp taucht immer wieder bei einer Prüfung auf.

Punkt a) konnte ich noch lösen. Einfach f(x)*x rechnen, ergibt das Fixpunktproblem: 2x²+x-6=x²

Bei Punkt b hab ich aber schon meine Probleme. ich hab einfach das Ergebnis von a) Null gesetzt und x1 und x2 ausgerechnet 2x²+x-6=0. Das ist aber falsch, wieso?

c) Soweit ich weiss, einfach von b) -x rechnen und lösen 2x²-6=0, richtig?

Danke für Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fixpunktproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 20:39 So 26.04.2009
Autor: Gonozal_IX

Hallo georg,

> Punkt a) konnte ich noch lösen. Einfach f(x)*x rechnen,
> ergibt das Fixpunktproblem: 2x²+x-6=x²

Hm, also formell gesehen ist das nicht das Fixpunktproblem. Ein Fixpunkt liegt vor, wenn was gilt? Diese Gleichung ist dann formell dein Fixpunktproblem. Das du mit x multiplizierst, ist schon ein Lösungsschritt. (Warum kannst du den überhaupt machen?)
Also schreib doch einfach mal auf, was es heisst, wenn x ein Fixpunkt ist.

> Bei Punkt b hab ich aber schon meine Probleme. ich hab
> einfach das Ergebnis von a) Null gesetzt und x1 und x2
> ausgerechnet 2x²+x-6=0. Das ist aber falsch, wieso?

Weil für einen Fixpunkt ja nicht gilt (was du oben selbst hingeschrieben hast) [mm]2x^2 + x - 6 = 0[/mm] sondern [mm]2x^2 + x - 6 = x^2[/mm].
Diese Gleichung musst du natürlich exakt lösen.


> c) Soweit ich weiss, einfach von b) -x rechnen und lösen
> 2x²-6=0, richtig?

Nein, auch hier gilt: Schreibe dir erstmal auf, was es heisst, wenn ein Fixpunkt vorliegt und forme es DANN um, so dass auf einer Seite Null steht.

MfG,
Gono.

Bezug
                
Bezug
Fixpunktproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:52 Mo 27.04.2009
Autor: georgb

Hi Gono,

Denke, dass hat mir weitergeholfen.

Ein Fixpunkt liegt vor, wenn der Punkt x folgendes erfüllt f(x)=x

Habe aber für die Teilaufgabe a) aber alle Punkte bekommen.

Wenn ich jetzt vom Fixpunktproblem 2x²+x-6=x² ausgehe, bekomme ich bei Punkt b) folgende Fixpunkte [mm] x_{1}=2, x_{2}=-3, [/mm] korrekt? (Lösen von x²+x-6=0)

Punkt c) in meinen Unterlagen steht folgendes: Fixpunktproblem in das äquivalente Nullstellenproblem zu überführen: f(x)-x=0
d.h. x²+x-6-x=0 => [mm] x_{1}=6, x_{2}=-6, [/mm] korrekt?

Vielen Dank!



Bezug
                        
Bezug
Fixpunktproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Mo 27.04.2009
Autor: M.Rex

Hallo

> Hi Gono,
>  
> Denke, dass hat mir weitergeholfen.
>  
> Ein Fixpunkt liegt vor, wenn der Punkt x folgendes erfüllt
> f(x)=x
>  
> Habe aber für die Teilaufgabe a) aber alle Punkte
> bekommen.
>  
> Wenn ich jetzt vom Fixpunktproblem 2x²+x-6=x² ausgehe,
> bekomme ich bei Punkt b) folgende Fixpunkte [mm]x_{1}=2, x_{2}=-3,[/mm]
> korrekt? (Lösen von x²+x-6=0)

[daumenhoch]

>  
> Punkt c) in meinen Unterlagen steht folgendes:
> Fixpunktproblem in das äquivalente Nullstellenproblem zu
> überführen: f(x)-x=0
>  d.h. x²+x-6-x=0 => [mm]x_{1}=6, x_{2}=-6,[/mm] korrekt?

>  

Hier hast du ein paar Dreher drin

f(x)-x=0
[mm] \Rightarrow 2x+1-\bruch{6}{x}-x=0 [/mm]
[mm] \gdw x+1-\bruch{6}{x}=0 [/mm]
[mm] \gdw x^{2}+x-6=0 [/mm]

An den Fixpunkten ändert sich ja nichts, wenn man das äquivalente Nullstellenproblem anwendet.


Marius

Bezug
                                
Bezug
Fixpunktproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:50 Di 28.04.2009
Autor: georgb

danke!
ihr seit mir eine große Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]