matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieFixpunkte und Spiegelungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Topologie und Geometrie" - Fixpunkte und Spiegelungen
Fixpunkte und Spiegelungen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunkte und Spiegelungen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:25 Do 20.10.2011
Autor: rainman_do

Aufgabe
Im Folgenden benutzen wir die Normalform
[mm] \pmat{ \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & \varepsilon } [/mm]
Eine Schubspiegelung im Raum $E$ ist eine Isometrie der Form [mm] $\tau_u \circ \sigma_U$, [/mm] wobei [mm] $\sigma_U$ [/mm] die Spiegelung an einer Ebene $U  [mm] \subset [/mm] E$ bezeichnet und der Translationsvektor $u$ parallel zu $U$ ist.
Wir betrachten nun eine beliebige orientierungsumkehrende affine Abbildung [mm] $\varphi_{v,F}$ [/mm] von $E$ (also [mm] $\det [/mm] F=-1$) und benutzen die obige Normalform. Mit [mm] $b=b_3$ [/mm] bezeichnen wir den "dritten Basisvektor", also einen Eigenvektor zum Eigenwert $-1$.
a) Gib unter Benutzung des Vektors $b$ eine notwendige und hinreichende Bedingung dafür an, dass [mm] $\varphi_{v,F}$ [/mm] einen Fixpunkt besitzt.
b) Zeige, dass [mm] $\varphi_{v,F}$ [/mm] entweder einen Fixpunkt besitzt und somit eine Drehspiegelung (einschließlich Sonderfällen) ist oder eine echte Schubspiegelung ist.

Hallo,

also mal rein anschaulich: Eine echte Schubspiegelung kann doch eh keine Fixpunkte haben, oder? D.h. eine notwendige Bedingung wäre, dass $u$ also der Translationsvektor gleich Null ist. Dann wäre diese Bedingung auch hinreichend, weil alle Punkte auf der Spiegelungsgeraden Fixpunkte sind. Aber wie soll ich das denn wohl mit dem Vektor $b$ und der Normalform zeigen? Also $b$ ist Eigenvektor zum EW -1, dann gilt [mm] $\varphi_{v,F}(b)=-b$....ok, [/mm] dann muss also [mm] $\varepsilon=-1$ [/mm] sein? Klar, weil die Drehmatrix, die in der Normalform drin ist Determinante 1 hat und die gesamte Determinante -1 sein soll.....aber was hat das mit den Fixpunkten zu tun?

Vielen Dank schonmal im Voraus.

        
Bezug
Fixpunkte und Spiegelungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Sa 22.10.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]