matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNichtlineare GleichungenFixpunkte/ Iterationsverfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Nichtlineare Gleichungen" - Fixpunkte/ Iterationsverfahren
Fixpunkte/ Iterationsverfahren < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunkte/ Iterationsverfahren: Aufgabe 3
Status: (Frage) beantwortet Status 
Datum: 22:55 Fr 18.04.2008
Autor: crazyhuts1

Aufgabe
3) Zeigen Sie:
a) Tx:=e^(-x)+1 hat höchstens einen Fixpunkt y auf R.

b)Der Fixpunktsatz für kontrahierende Abblidungen lässt sich auf T anwenden.

c)Bestimmen Sie ein n Element N so, dass nach der Fehlerabschätzung aus dem FPS gilt: Betrag von (y-xn) kleiner gleich 1/100.

Hallo!
Kriege die Aufgaben nicht hin.

Bei a) muss ich doch dafür erstmal zeigen, dass die Gleichung kontrahiert, oder? Und dafür müsste ich sie nach x auflösen.. was mir aber gerade nicht gelingen will... - kann mir jemand helfen? Und wie kann ich dann zeigen, dass sie kontrahiert?

zu b) ist es richtig, dass ich erst dafür zeigen muss, dass ein Fixpunkt existiert, dann T bildet D "in sich" ab und dann, dass es kontrahiert? Und wie ist dafür der Ansatz??

c) Auf welche Weise kann ich denn nach solch einem n suchen?

Würde mich über Hilfe freuen! Viele Grüße.
Anna

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fixpunkte/ Iterationsverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 01:41 Sa 19.04.2008
Autor: Zneques

Hallo,

> Bei a) muss ich doch dafür erstmal zeigen, dass die Gleichung kontrahiert, oder?

Nein.
Die Aufgabe lautet :

> Zeigen Sie, dass Tx:=e^(-x)+1 höchstens einen Fixpunkt y [mm] \in\IR [/mm] hat.

D.h. es ist nur zu zeigen, dass, falls es einen Fixpunkt gibt, dieser dann auch der einzige sein muss.

Übrigens ist T(x) keine Kontraktion.
[mm] |T(-10)-T(0)|\approx 22026\not\le [/mm] 10=|0-(-10)|

> zu b) ist es richtig, dass ich erst dafür zeigen muss, dass ein Fixpunkt existiert, dann T bildet D "in sich" ab und dann, dass es kontrahiert? Und wie ist dafür der Ansatz??

Leider, wieder etwas an der Aufgabe vorbei.
Daher hier nochmal :

> Der Fixpunktsatz für kontrahierende Abblidungen lässt sich auf T anwenden.

Wie in a) gesehen ist T(x) keine Kontraktion. Der Fixpunktsatz wäre also nicht anwendbar. Jedoch könnte man (du) versuchen die Definitionsmenge einzuschränken, so dass T(x) auf der neuen Menge ein kontrahierende Selbstabbildung ist. Dann gilt in dem Bereich der Satz.

c)
Laut Fixpunktsatz konvergiert die Folge [mm] x_{n+1}=f(x_n) [/mm] gegen den Fixpunkt.
Dies sollst du nun solange durchführen, bis [mm] |y-x_n|\le\frac{1}{100}. [/mm]
Für die Ungleichung solltet ihr bereits eine Abschätzung kennen.

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]