matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteFixpunkte,Fixgeraden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - Fixpunkte,Fixgeraden
Fixpunkte,Fixgeraden < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunkte,Fixgeraden: Tipp,Idee
Status: (Frage) beantwortet Status 
Datum: 08:58 Fr 09.10.2009
Autor: mathegenie_90

hallo liebe forumfreunde

Ich habe eine Frage:

Wenn eine Matrix A , keine reellen Eigenwerte hat und dann die Aufgabe dazu lautet:

[mm] A=\pmat{ 0 & -2 \\ 2 & 0 } [/mm]  , die Matrix A hat keine Eigenwerte und somit auch,keine Eigenvektoren.
Aufgabe: Bestimmen Sie Fixpunkte und Fixgeraden.

Wie geht man an diese Aufgabe ran?

Meine Meinung:
Also da es keine reelen Eigenwerte hat, hat es auch keine Fixpunkte und auch keine Fixgerade oder auch keine Fixpunktgerade.
Stimmts?

würd mich über jede hilfe freuen.
Vielen Dank im Voraus.
MfG
Danyal



        
Bezug
Fixpunkte,Fixgeraden: Antwort
Status: (Antwort) fertig Status 
Datum: 09:49 Fr 09.10.2009
Autor: pelzig

Fixpunkte sind genau die Eigenvektoren zum Eigenwert 1. Wenn es keine reellen Eigenwerte gibt, dann ist $0$ der einzige Fixpunkt.

Gruß, Robert

Bezug
                
Bezug
Fixpunkte,Fixgeraden: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 09:55 Fr 09.10.2009
Autor: mathegenie_90

Erstmal vielen Dank für die schnelle hilfe

heißt es jetzt,wenn der Eigenvektor [mm] \vec{e}= \vektor{1 \\ 5} [/mm] ist,dnn ist der Fixpunkt (5/0) oder  habe ich da was missverstanden?

Vielen Dank im Voraus.
MfG
Danyal

Bezug
                        
Bezug
Fixpunkte,Fixgeraden: Antwort
Status: (Antwort) fertig Status 
Datum: 10:01 Fr 09.10.2009
Autor: fred97


> Erstmal vielen Dank für die schnelle hilfe
>  
> heißt es jetzt,wenn der Eigenvektor [mm]\vec{e}= \vektor{1 \\ 5}[/mm]
> ist,dnn ist der Fixpunkt (5/0) oder  habe ich da was
> missverstanden?

Ja.

Fixpunkt bedeutet doch:  Ax=x            (A eine Matrix)

Du siehst: x = 0 erfüllt obige Gleichung, ist also ein Fixpunkt.

Für x [mm] \not=0 [/mm] gilt:

                      x ist Fixpunkt [mm] \gdw [/mm] x ist Eigenvektor von A zum Eigenwert 1


Wenn also eine Matrix nicht den Eigenwert 1 hat, so ist nur x=0 ein Fixpunkt

FRED


>  
> Vielen Dank im Voraus.
>  MfG
>  Danyal


Bezug
                                
Bezug
Fixpunkte,Fixgeraden: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:12 Fr 09.10.2009
Autor: mathegenie_90

hallo und danke für die hilfe
> > Erstmal vielen Dank für die schnelle hilfe
>  >  
> > heißt es jetzt,wenn der Eigenvektor [mm]\vec{e}= \vektor{1 \\ 5}[/mm]
> > ist,dnn ist der Fixpunkt (5/0) oder  habe ich da was
> > missverstanden?
>  
> Ja.

mir wirds nich so gan klar. Ist (5/0) nun ein Fixpunkt oder nicht?

>  
> Fixpunkt bedeutet doch:  Ax=x            (A eine Matrix)
>  
> Du siehst: x = 0 erfüllt obige Gleichung, ist also ein
> Fixpunkt.
>  
> Für x [mm]\not=0[/mm] gilt:
>  
> x ist Fixpunkt [mm]\gdw[/mm] x ist Eigenvektor von A zum Eigenwert
> 1
>  
>
> Wenn also eine Matrix nicht den Eigenwert 1 hat, so ist nur
> x=0 ein Fixpunkt

Das verstehe ich jetzt so,dass wenn der Eigenvektor einer Matrix folgendermaßen lautet: [mm] \vec{e}=\vektor{0 \\ 1}, [/mm] dass es dann keine Fixpunkte hat. aber hier müsste es doch gerade unendlich viele haben,weil das eine fixpunktgerade ist, oder?
Vielen DAnk im Voraus.
MfG
Danyal

>  
> FRED
>  
>
> >  

> > Vielen Dank im Voraus.
>  >  MfG
>  >  Danyal  


Bezug
                                        
Bezug
Fixpunkte,Fixgeraden: Antwort
Status: (Antwort) fertig Status 
Datum: 11:42 Fr 09.10.2009
Autor: leduart

Hallo
Bezieht sich deine Frage noch auf die urspruengliche Matrix?
oder denkst du dir jetzt Eigenvektoren zu ner gedachten Matrix aus?
Eigenvektoren geben die Fixgeraden an, wenn ein EigenVektor
[mm] \vektor{1 \\ 5} [/mm] ist, wieso soll dann (5,0) ein fixpunkt sein?
Da steht doch deutlich : nur wenn der Eigenwert 1 ist. und dann waere (1,5) Fixpunkt. Aber sicher nicht (5,0)
Bei deiner Matrix ist nur (0,0) Fixpunkt, die Gerade y=x bzw
[mm] x=s*\vektor{1 \\ 1} [/mm] ist Fixgerade.
Das kannst du ja aber leicht durch Einsetzen selbst nachpruefen.
Gruss leduart

Bezug
                                                
Bezug
Fixpunkte,Fixgeraden: Tipp,Idee
Status: (Frage) beantwortet Status 
Datum: 18:01 Mo 12.10.2009
Autor: mathegenie_90

hallo und danke für die verständliche hilfe.

Leider bin ich mir bei folgender Aufgabe nicht sicher ob das Ergebnis korrekt ist,deshalb bitte ich euch um eure hilfe.

Aufgabe:

A(0/1) [mm] \mapsto [/mm] A'(4/0) : B(-1/-1) [mm] \mapsto [/mm] B'(-1/-1) ; C(0/-4) [mm] \mapsto [/mm] C'(0/-4)

a) Bestimmen Sie jeweils die Abbildungsgleichung der zugehörigen affinen Abbildung.
b) Bestimmen Sie Fixpunkte und Fixgeraden

Meine Lösungen bzw. meine Ansätze:

a) Durch Reduktion erhalte ich die Abbildungsgleichung;
   [mm] A=\pmat{ 3,4 & 0,8 \\ -0,6 & 0,8 } [/mm] ; Verschiebungsvektor [mm] \vec{v}= \vektor{3,2 \\ -0,8} [/mm]

b) Die Fixpunkte kann man ja von B' und C' ablesen.
    Gibt es noch weitere Fixpunkte,falls ja,wie bestimme ich diese? Wie
    bestimmt man die Fixgerade oder evtl. auch die Fixpunktgerade? Kann
    man davon ausgehen, dass wenn eine Matrix A  2 Eigenwerte hat,somit
    auch eine Fixgerade oder evtl. eine Fixpunktgerade haben muss?

Würd mich über jede hilfe / Ergänzung freuen.
Vielen Dank im Voraus.
MfG
Danyal
    

Bezug
                                                        
Bezug
Fixpunkte,Fixgeraden: Antwort
Status: (Antwort) fertig Status 
Datum: 18:54 Mo 12.10.2009
Autor: MathePower

Hallo mathegenie_90,

> hallo und danke für die verständliche hilfe.
>  
> Leider bin ich mir bei folgender Aufgabe nicht sicher ob
> das Ergebnis korrekt ist,deshalb bitte ich euch um eure
> hilfe.
>  
> Aufgabe:
>  
> A(0/1) [mm]\mapsto[/mm] A'(4/0) : B(-1/-1) [mm]\mapsto[/mm] B'(-1/-1) ;
> C(0/-4) [mm]\mapsto[/mm] C'(0/-4)
>  
> a) Bestimmen Sie jeweils die Abbildungsgleichung der
> zugehörigen affinen Abbildung.
>  b) Bestimmen Sie Fixpunkte und Fixgeraden
>  
> Meine Lösungen bzw. meine Ansätze:
>  
> a) Durch Reduktion erhalte ich die Abbildungsgleichung;
>     [mm]A=\pmat{ 3,4 & 0,8 \\ -0,6 & 0,8 }[/mm] ;
> Verschiebungsvektor [mm]\vec{v}= \vektor{3,2 \\ -0,8}[/mm]


Stimmt. [ok]


>  
> b) Die Fixpunkte kann man ja von B' und C' ablesen.


Wenn B' und C' Fixpunkte sind, dann stellt sich doch die Frage,
ob die Gerade durch B' und C' eine Fixgerade ist.


>      Gibt es noch weitere Fixpunkte,falls ja,wie bestimme
> ich diese? Wie


Fixpunkte sind hier durch die Lösungsmenge von

[mm]\pmat{x \\ y}=\pmat{ 3,4 & 0,8 \\ -0,6 & 0,8 }*\pmat{x \\ y}+ \pmat{3,2 \\ -0,8}[/mm]

gegeben.


> bestimmt man die Fixgerade oder evtl. auch die
> Fixpunktgerade? Kann
> man davon ausgehen, dass wenn eine Matrix A  2 Eigenwerte
> hat,somit
> auch eine Fixgerade oder evtl. eine Fixpunktgerade haben
> muss?
>  


Erstens mal muß der Ortsvektor einer möglichen Fixgeraden
ein Fixpunkt sein.

Die Richtungsvektoren der Fixgeraden sind durch die Eigenwerte von

[mm]\pmat{ 3,4 & 0,8 \\ -0,6 & 0,8 }[/mm]

bestimmt.

Zu jedem Eigenwert gehört ein Eigenvektor,
der dann Richtungsvektor der Fixgeraden ist.


> Würd mich über jede hilfe / Ergänzung freuen.
>  Vielen Dank im Voraus.
>  MfG
>  Danyal
>      


Gruss
MathePower

Bezug
                                                                
Bezug
Fixpunkte,Fixgeraden: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:51 So 18.10.2009
Autor: mathegenie_90

Erstmal vielen Dank für die verständliche hilfe

hallo

> Hallo mathegenie_90,
>  
> > hallo und danke für die verständliche hilfe.
>  >  
> > Leider bin ich mir bei folgender Aufgabe nicht sicher ob
> > das Ergebnis korrekt ist,deshalb bitte ich euch um eure
> > hilfe.
>  >  
> > Aufgabe:
>  >  
> > A(0/1) [mm]\mapsto[/mm] A'(4/0) : B(-1/-1) [mm]\mapsto[/mm] B'(-1/-1) ;
> > C(0/-4) [mm]\mapsto[/mm] C'(0/-4)
>  >  
> > a) Bestimmen Sie jeweils die Abbildungsgleichung der
> > zugehörigen affinen Abbildung.
>  >  b) Bestimmen Sie Fixpunkte und Fixgeraden
>  >  
> > Meine Lösungen bzw. meine Ansätze:
>  >  
> > a) Durch Reduktion erhalte ich die Abbildungsgleichung;
>  >     [mm]A=\pmat{ 3,4 & 0,8 \\ -0,6 & 0,8 }[/mm] ;
> > Verschiebungsvektor [mm]\vec{v}= \vektor{3,2 \\ -0,8}[/mm]
>  
>
> Stimmt. [ok]
>  
>
> >  

> > b) Die Fixpunkte kann man ja von B' und C' ablesen.
>  
>
> Wenn B' und C' Fixpunkte sind, dann stellt sich doch die
> Frage,
>  ob die Gerade durch B' und C' eine Fixgerade ist.
>  
>
> >      Gibt es noch weitere Fixpunkte,falls ja,wie bestimme

> > ich diese? Wie
>
>
> Fixpunkte sind hier durch die Lösungsmenge von
>  
> [mm]\pmat{x \\ y}=\pmat{ 3,4 & 0,8 \\ -0,6 & 0,8 }*\pmat{x \\ y}+ \pmat{3,2 \\ -0,8}[/mm]
>  
> gegeben.

hier bin ich folgendermaßen vorgegangen:

3,4x+0,8y+3,2=x
-0,6x+0,8y-0,8=y

2,4x+0,8y=-3,2
-0,6x-0,2y= 0,8  /*4

[mm] \Rightarrow [/mm] 0=0

was heißt das jetzt genau?unendlich viele Fixpunkte,also eine Fixpunktgerade vielleicht?

>  
>
> > bestimmt man die Fixgerade oder evtl. auch die
> > Fixpunktgerade? Kann
> > man davon ausgehen, dass wenn eine Matrix A  2 Eigenwerte
> > hat,somit
> > auch eine Fixgerade oder evtl. eine Fixpunktgerade haben
> > muss?
>  >  
>
>
> Erstens mal muß der Ortsvektor einer möglichen
> Fixgeraden
>  ein Fixpunkt sein.
>  
> Die Richtungsvektoren der Fixgeraden sind durch die
> Eigenwerte von
>  
> [mm]\pmat{ 3,4 & 0,8 \\ -0,6 & 0,8 }[/mm]
>  
> bestimmt.
>  
> Zu jedem Eigenwert gehört ein Eigenvektor,
>  der dann Richtungsvektor der Fixgeraden ist.

hierzu habe ich eine Frage:

Wenn jetzt eine Matrix A zwei Eigenwerte hat,hats ja auch zwei Eigenvektoren,heißt das jetzt,dass es zwei Fixgerade haben muss oder 2 Fixgeraden haben könnte?

Würd mich über jede hilfe / Ergänzung freuen.
Vielen Dank im Voraus.
MfG
Danyal



Bezug
                                                                        
Bezug
Fixpunkte,Fixgeraden: Antwort
Status: (Antwort) fertig Status 
Datum: 00:58 Mo 19.10.2009
Autor: leduart

Hallo

> hier bin ich folgendermaßen vorgegangen:
>  
> 3,4x+0,8y+3,2=x
>  -0,6x+0,8y-0,8=y
>  
> 2,4x+0,8y=-3,2
>  -0,6x-0,2y= 0,8  /*4
>  
> [mm]\Rightarrow[/mm] 0=0

das kommt doch nur raus, wenn du die 2 Gleichungen  voneinander abziest, weil sie vielfache sind. es bleibt:
eine stehen, du hast also die Gerade :
-0,6x-0,2y= 0,8
die haettest du ohne Loesen des Systems als verbindungsgerade der 2 Fixpunte auch finden koennen.
affine Abbildungen sind Spiegelungen, Drehungen Streckungen, soweit lineare Abb. wenn noch ne Verschiebung dazukommt affine Abb.
Du kannst keinen Fixpkt haben , nur einen Fix punkt haben, oder wenn du mehr hast liegen sie auf einer Fixpunktgeraden, eine Fixgerade  muss den Fixpunkt enthalten es kann auch eine Fixpunktgerade sein. 2 Fixgeraden geht nicht. (Ueberleg, wie du das z. Bsp. an Hand der moeglichen Loesungen des LGS:  x=Ax+b zeigen kannst.
Gruss leduart


> was heißt das jetzt genau?unendlich viele Fixpunkte,also
> eine Fixpunktgerade vielleicht?

ja
Gruss leduart


Bezug
                                                                                
Bezug
Fixpunkte,Fixgeraden: Tipp,Idee
Status: (Frage) beantwortet Status 
Datum: 10:06 Mo 19.10.2009
Autor: mathegenie_90

hallo und vielen Dank für die Erklärung

> Hallo
>  
> > hier bin ich folgendermaßen vorgegangen:
>  >  
> > 3,4x+0,8y+3,2=x
>  >  -0,6x+0,8y-0,8=y
>  >  
> > 2,4x+0,8y=-3,2
>  >  -0,6x-0,2y= 0,8  /*4
>  >  
> > [mm]\Rightarrow[/mm] 0=0
>  das kommt doch nur raus, wenn du die 2 Gleichungen  
> voneinander abziest, weil sie vielfache sind. es bleibt:
>  eine stehen, du hast also die Gerade :
>   -0,6x-0,2y= 0,8

-0,6x-0,2y=0,8
=>  -0,2y=0,8+0,6x / :(-0,2)
=>        y = -4 -3x

=> [mm] \vec{x}=\vektor{0 \\ -4} [/mm] * k [mm] \vektor{1 \\ -3} [/mm]
Das wäre dann meine Geradengleihung,also die Fixpunktgeradengleichung.
stimmt das so?

> die haettest du ohne Loesen des Systems als
> verbindungsgerade der 2 Fixpunte auch finden koennen.
>  affine Abbildungen sind Spiegelungen, Drehungen
> Streckungen, soweit lineare Abb. wenn noch ne Verschiebung
> dazukommt affine Abb.
>  Du kannst keinen Fixpkt haben , nur einen Fix punkt haben,
> oder wenn du mehr hast liegen sie auf einer
> Fixpunktgeraden, eine Fixgerade  muss den Fixpunkt
> enthalten es kann auch eine Fixpunktgerade sein. 2
> Fixgeraden geht nicht.

Also wenn ich 2 Fixpunkte habe,so ist das automatisch eine Fixpunktgerade? Ich dachte dass es auch eine Fixgerade sein könnte.
wann weiß ich denn wann wann der Fixpunkt auf einer Fixgeraden liegt?Mit hilfe von Eigenwerten und Eigenvektoren?wenn ja,wie müsste ich da vorgehen?

Würd mich über jede hilfe  / Idee freuen.
Vielen Dank im Voraus.
MfG
DAnyal

Bezug
                                                                                        
Bezug
Fixpunkte,Fixgeraden: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 Mo 19.10.2009
Autor: leduart

Hallo
2 Fixpunkte: x1,x2
(x=Vektoren)
x1=Ax1+b
x2=Ax2+b
beliebiger Punkt auf der Geraden durch x1 und x2 :
x3=x1+r*(x1-x2)
eingesetz
Ax3+b=Ax1+A*rx1-A*rx2+b=Ax1+b+r(Ax1+b)-r(Ax2+b)=x1+r(x1-x2)=x3
also ist auch x3 Fixpunkt, die Gerade also ne Fixpunktgerade.
auf die Weise kannst du alle deine Fragen selbst beantworten.
Gruss leduart

Bezug
                                                                                                
Bezug
Fixpunkte,Fixgeraden: Tipp,Idee
Status: (Frage) beantwortet Status 
Datum: 16:52 Mi 21.10.2009
Autor: mathegenie_90

hallo und danke für die verständliche hilfe.

Leider bin ich mir bei folgender Aufgabe nicht sicher ob das Ergebnis korrekt ist,deshalb bitte ich euch um eure hilfe.

Aufgabe:

A(1/1) [mm] \mapsto [/mm] A'(12/19) : B(-2/0) [mm] \mapsto [/mm] B'(0/16) ; C(-3/1) [mm] \mapsto [/mm] C'(0/19)

a) Bestimmen Sie jeweils die Abbildungsgleichung der zugehörigen affinen Abbildung.
b) Bestimmen Sie die Eigenvektoren und die Eigenwerte
c) Bestimmen Sie Fixpunkte und Fixgeraden

Meine Lösungen bzw. meine Ansätze:

a) Durch Reduktion erhalte ich die Abbildungsgleichung;
   [mm] A=\pmat{ 0 & 12 \\ 0 & 3 } [/mm] ; Verschiebungsvektor [mm] \vec{v}= \vektor{12\\ 16} [/mm]

b) Eigenwerte sind 3 und 0.
    Eigenvektoren sind beide [mm] \vektor{1 \\ 0} [/mm]

c) Nun muss ich ja c) gar nicht rechnen,denn der Eigenvektor ist ja der Richtungsvektor von der Fixgerade.
Es gibt unendlich viele Fixpunkte und die Fixgerade ist parallel zur y-Achse.

Würd mich über jede hilfe / Ergänzung freuen.
Vielen Dank im Voraus.
MfG
Danyal

Bezug
                                                                                                        
Bezug
Fixpunkte,Fixgeraden: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 Mi 21.10.2009
Autor: MathePower

Hallo mathegenie_90,

> hallo und danke für die verständliche hilfe.
>
> Leider bin ich mir bei folgender Aufgabe nicht sicher ob
> das Ergebnis korrekt ist,deshalb bitte ich euch um eure
> hilfe.
>
> Aufgabe:
>
> A(1/1) [mm]\mapsto[/mm] A'(12/19) : B(-2/0) [mm]\mapsto[/mm] B'(0/16) ;
> C(-3/1) [mm]\mapsto[/mm] C'(0/19)
>
> a) Bestimmen Sie jeweils die Abbildungsgleichung der
> zugehörigen affinen Abbildung.
> b) Bestimmen Sie die Eigenvektoren und die Eigenwerte
>  c) Bestimmen Sie Fixpunkte und Fixgeraden
>
> Meine Lösungen bzw. meine Ansätze:
>
> a) Durch Reduktion erhalte ich die Abbildungsgleichung;
> [mm]A=\pmat{ 0 & 12 \\ 0 & 3 }[/mm] ; Verschiebungsvektor [mm]\vec{v}= \vektor{12\\ 16}[/mm]


Von A bzw. vom Verschiebungsvektor v
stimmen jewils nur die zweite Zeile bzw. die zweite Komponente.


>
> b) Eigenwerte sind 3 und 0.
>      Eigenvektoren sind beide [mm]\vektor{1 \\ 0}[/mm]
>  
> c) Nun muss ich ja c) gar nicht rechnen,denn der
> Eigenvektor ist ja der Richtungsvektor von der Fixgerade.
>  Es gibt unendlich viele Fixpunkte und die Fixgerade ist
> parallel zur y-Achse.
>  
> Würd mich über jede hilfe / Ergänzung freuen.
> Vielen Dank im Voraus.
> MfG
> Danyal  


Gruss
MathePower

Bezug
                                                                                                                
Bezug
Fixpunkte,Fixgeraden: Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:03 Mi 21.10.2009
Autor: mathegenie_90

hallo

> Hallo mathegenie_90,
>  
> > hallo und danke für die verständliche hilfe.
> >
> > Leider bin ich mir bei folgender Aufgabe nicht sicher ob
> > das Ergebnis korrekt ist,deshalb bitte ich euch um eure
> > hilfe.
> >
> > Aufgabe:
> >
> > A(1/1) [mm]\mapsto[/mm] A'(12/19) : B(-2/0) [mm]\mapsto[/mm] B'(0/16) ;
> > C(-3/1) [mm]\mapsto[/mm] C'(0/19)
> >
> > a) Bestimmen Sie jeweils die Abbildungsgleichung der
> > zugehörigen affinen Abbildung.
> > b) Bestimmen Sie die Eigenvektoren und die Eigenwerte
>  >  c) Bestimmen Sie Fixpunkte und Fixgeraden
> >
> > Meine Lösungen bzw. meine Ansätze:
> >
> > a) Durch Reduktion erhalte ich die Abbildungsgleichung;
> > [mm]A=\pmat{ 0 & 12 \\ 0 & 3 }[/mm] ; Verschiebungsvektor [mm]\vec{v}= \vektor{12\\ 16}[/mm]
>
>
> Von A bzw. vom Verschiebungsvektor v
> stimmen jewils nur die zweite Zeile bzw. die zweite
> Komponente.

so jetzt habe ichs korrigiert,jetzt müsste es lauten:
[mm] A=\pmat{ 3 & 3 \\ 0 & 3 } [/mm] und Verschiebungsvektor [mm] \vec{v}= \vektor{6\\ 16} [/mm]


>  
>
> >
> > b) Eigenwerte sind 3 und 0.
>  >      Eigenvektoren sind beide [mm]\vektor{1 \\ 0}[/mm]

Es gibt nun nur einen Eigenwert und zwar die 3 und der Eigenvektor bleibt gleich.

>  >  
> > c) Nun muss ich ja c) gar nicht rechnen,denn der
> > Eigenvektor ist ja der Richtungsvektor von der Fixgerade.
>  >  Es gibt unendlich viele Fixpunkte und die Fixgerade ist
> > parallel zur y-Achse.

Bei der Aussage für c) bleibe ich, ist das korrekt? wenn ja wie finde ich denn den Stützvektor für die Fixgerade heraus?

Würd mich über jede hilfe / Ergänzung freuen.
Vielen Dank im Voraus.
MfG
Danyal  


Bezug
                                                                                                                        
Bezug
Fixpunkte,Fixgeraden: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 Mi 21.10.2009
Autor: MathePower

Hallo mathegenie_90,

> hallo
>  
> > Hallo mathegenie_90,
>  >  
> > > hallo und danke für die verständliche hilfe.
> > >
> > > Leider bin ich mir bei folgender Aufgabe nicht sicher ob
> > > das Ergebnis korrekt ist,deshalb bitte ich euch um eure
> > > hilfe.
> > >
> > > Aufgabe:
> > >
> > > A(1/1) [mm]\mapsto[/mm] A'(12/19) : B(-2/0) [mm]\mapsto[/mm] B'(0/16) ;
> > > C(-3/1) [mm]\mapsto[/mm] C'(0/19)
> > >
> > > a) Bestimmen Sie jeweils die Abbildungsgleichung der
> > > zugehörigen affinen Abbildung.
> > > b) Bestimmen Sie die Eigenvektoren und die Eigenwerte
>  >  >  c) Bestimmen Sie Fixpunkte und Fixgeraden
> > >
> > > Meine Lösungen bzw. meine Ansätze:
> > >
> > > a) Durch Reduktion erhalte ich die Abbildungsgleichung;
> > > [mm]A=\pmat{ 0 & 12 \\ 0 & 3 }[/mm] ; Verschiebungsvektor [mm]\vec{v}= \vektor{12\\ 16}[/mm]
> >
> >
> > Von A bzw. vom Verschiebungsvektor v
> > stimmen jewils nur die zweite Zeile bzw. die zweite
> > Komponente.
>  so jetzt habe ichs korrigiert,jetzt müsste es lauten:
>  [mm]A=\pmat{ 3 & 3 \\ 0 & 3 }[/mm] und Verschiebungsvektor [mm]\vec{v}= \vektor{6\\ 16}[/mm]
>  

>


[ok]


> >  

> >
> > >
> > > b) Eigenwerte sind 3 und 0.
>  >  >      Eigenvektoren sind beide [mm]\vektor{1 \\ 0}[/mm]
>  Es
> gibt nun nur einen Eigenwert und zwar die 3 und der
> Eigenvektor bleibt gleich.
>  


[ok]


> >  >  

> > > c) Nun muss ich ja c) gar nicht rechnen,denn der
> > > Eigenvektor ist ja der Richtungsvektor von der Fixgerade.
>  >  >  Es gibt unendlich viele Fixpunkte und die Fixgerade
> ist
> > > parallel zur y-Achse.
>  
> Bei der Aussage für c) bleibe ich, ist das korrekt? wenn
> ja wie finde ich denn den Stützvektor für die Fixgerade
> heraus?


Schau mal hier: []Fixgerade


>  
> Würd mich über jede hilfe / Ergänzung freuen.
> Vielen Dank im Voraus.
> MfG
> Danyal  
>  


Gruss
MathePower

Bezug
                                                                                
Bezug
Fixpunkte,Fixgeraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:37 Mo 19.10.2009
Autor: Al-Chwarizmi


> Du kannst keinen Fixpkt haben , nur einen Fixpunkt haben,
> oder wenn du mehr hast liegen sie auf einer
> Fixpunktgeraden, eine Fixgerade  muss den Fixpunkt
> enthalten es kann auch eine Fixpunktgerade sein. 2
> Fixgeraden geht nicht.

Genau zwei Fixgeraden geht nicht, mindestens 2 aber
schon: eine Parallelverschiebung hat unendlich viele
zueinander parallele Fixgeraden, und bei der Identität
ist sogar jede Gerade sowohl Fixgerade als auch Fix-
punktgerade.

Gruß    Al

Bezug
                                                                                        
Bezug
Fixpunkte,Fixgeraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:22 Mo 19.10.2009
Autor: mathegenie_90

Danke

das leuchtet mir ein.

MfG
Danyal

Bezug
                                                                
Bezug
Fixpunkte,Fixgeraden: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:02 Mi 21.10.2009
Autor: mathegenie_90

hallo

> Erstens mal muß der Ortsvektor einer möglichen
> Fixgeraden
>  ein Fixpunkt sein.
>  
> Die Richtungsvektoren der Fixgeraden sind durch die
> Eigenwerte von
>  
> [mm]\pmat{ 3,4 & 0,8 \\ -0,6 & 0,8 }[/mm]
>  
> bestimmt.
>  
> Zu jedem Eigenwert gehört ein Eigenvektor,
>  der dann Richtungsvektor der Fixgeraden ist.

Genau hierzu habe ich eine Frage: Wenn der Eigenvektor der Richtungsvektor der Fixgeraden ist,dann kann man doch von einer Fixgeraden nur dann ausgehen,wenn beide Eigenvektoren gleich oder kollinear sind oder?

Würd mich über jede hilfe freuen.
Vielen Dank im Voraus.
MfG
Danyal
    

Bezug
                                                                        
Bezug
Fixpunkte,Fixgeraden: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Mi 21.10.2009
Autor: MathePower

Hallo mathegenie_90,

> hallo
>  
> > Erstens mal muß der Ortsvektor einer möglichen
> > Fixgeraden
>  >  ein Fixpunkt sein.
>  >  
> > Die Richtungsvektoren der Fixgeraden sind durch die
> > Eigenwerte von
>  >  
> > [mm]\pmat{ 3,4 & 0,8 \\ -0,6 & 0,8 }[/mm]
>  >  
> > bestimmt.
>  >  
> > Zu jedem Eigenwert gehört ein Eigenvektor,
>  >  der dann Richtungsvektor der Fixgeraden ist.
>  
> Genau hierzu habe ich eine Frage: Wenn der Eigenvektor der
> Richtungsvektor der Fixgeraden ist,dann kann man doch von
> einer Fixgeraden nur dann ausgehen,wenn beide Eigenvektoren
> gleich oder kollinear sind oder?


Das ist richtig. [ok]


>  
> Würd mich über jede hilfe freuen.
>  Vielen Dank im Voraus.
>  MfG
>  Danyal
>        


Gruss
MathePower

Bezug
                                                                                
Bezug
Fixpunkte,Fixgeraden: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:15 Mi 21.10.2009
Autor: mathegenie_90

hallo und danke für die schnelle hilfe

Was ich fragen wollte ist,dass es auch für die Fixpunktgerade gilt oder?

MfG
Danyal

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]