matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieFinde die Stammfunktion...
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integrationstheorie" - Finde die Stammfunktion...
Finde die Stammfunktion... < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Finde die Stammfunktion...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:00 Mo 21.01.2013
Autor: Paivren

N'abend zusammen.

Bräuchte mal bei einer Integration Hilfe, hfftl. hat jemand Zeit, sich das mal anzuschauen^^
[mm] \integral_{a}^{b}{\bruch{1}{x^{4}-81} dx} [/mm]
= [mm] \integral_{a}^{b}{\bruch{1}{(x+3)(x-3)(x^{2}+9)} dx} [/mm]

Partialbruchzerlegung:
[mm] =\bruch{A}{x+3} [/mm] + [mm] \bruch{B}{x-3} [/mm] + [mm] \bruch{Cx+D}{x^{2}+9} [/mm]
Den Ansatz für komplexe Nullstellen des Nenners, also [mm] \bruch{Cx+D}{x^{2}+9}, [/mm] habe ich aus dem Netz.

Nun bringe ich alle auf den Hauptnenner und führe den Koeffzientenvergleich durch.
[mm] \Rightarrow [/mm] 4 Gleichungen:
A+B+C=0 (1)
-3A+3B+D=0 (2)
9A+9B-9C=0 (3)
-27A+27B-9D=1 (4)

In Matrixform gelöst:
[mm] A=-\bruch{1}{108} [/mm]
[mm] B=\bruch{1}{108} [/mm]
C=0
[mm] D=-\bruch{1}{18} [/mm]

[mm] \Rightarrow [/mm] Integral mithilfe der Partialbrüche aufteilen:
[mm] \integral_{a}^{b}{\bruch{1}{(x+3)(x-3)(x^{2}+9)} dx} [/mm]
[mm] =-\integral_{a}^{b}{\bruch{1}{108x+324} dx} [/mm] + [mm] \integral_{a}^{b}{\bruch{1}{108x-324} dx} -\integral_{a}^{b}{\bruch{1}{18x^{2}+162} dx} [/mm]

Die ersten beiden Integrale sind ja relativ leicht mit dem nat. Logarithmus zu berechnen. Aber was mach ich mit dem letzten Term? Substituieren?

Gruß

        
Bezug
Finde die Stammfunktion...: Sprache
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:11 Mo 21.01.2013
Autor: Marcel

Hallo,

nur mal gerade ein Kommentar: Stammfunktionen sind i.a. NICHT eindeutig
(nur eindeutig bis auf eine additive Konstante(=konstante Funktion)), daher
solltest Du schreiben: "Finde EINE Stammfunktion..."

Gruß,
  Marcel

Bezug
                
Bezug
Finde die Stammfunktion...: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:27 Mo 21.01.2013
Autor: Paivren

Das stimmt wohl. War nur zu sehr darauf fixiert, den Teil zu finden, der bei allen Stammfunktionen gleich ist^^

Bezug
        
Bezug
Finde die Stammfunktion...: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Mo 21.01.2013
Autor: Helbig


> N'abend zusammen.
>  
> Bräuchte mal bei einer Integration Hilfe, hfftl. hat
> jemand Zeit, sich das mal anzuschauen^^
>  [mm]\integral_{a}^{b}{\bruch{1}{x^{4}-81} dx}[/mm]
>  =
> [mm]\integral_{a}^{b}{\bruch{1}{(x+3)(x-3)(x^{2}+9)} dx}[/mm]
>  
> Partialbruchzerlegung:
>  [mm]=\bruch{A}{x+3}[/mm] + [mm]\bruch{B}{x-3}[/mm] + [mm]\bruch{Cx+D}{x^{2}+9}[/mm]
>  Den Ansatz für komplexe Nullstellen des Nenners, also
> [mm]\bruch{Cx+D}{x^{2}+9},[/mm] habe ich aus dem Netz.
>  
> Nun bringe ich alle auf den Hauptnenner und führe den
> Koeffzientenvergleich durch.
>  [mm]\Rightarrow[/mm] 4 Gleichungen:
>  A+B+C=0 (1)
>  -3A+3B+D=0 (2)
>  9A+9B-9C=0 (3)
>  -27A+27B-9D=1 (4)
>  
> In Matrixform gelöst:
>  [mm]A=-\bruch{1}{108}[/mm]
>  [mm]B=\bruch{1}{108}[/mm]
>  C=0
>  [mm]D=-\bruch{1}{18}[/mm]
>  
> [mm]\Rightarrow[/mm] Integral mithilfe der Partialbrüche
> aufteilen:
>  [mm]\integral_{a}^{b}{\bruch{1}{(x+3)(x-3)(x^{2}+9)} dx}[/mm]
>  
> [mm]=-\integral_{a}^{b}{\bruch{1}{108x+324} dx}[/mm] +
> [mm]\integral_{a}^{b}{\bruch{1}{108x-324} dx} -\integral_{a}^{b}{\bruch{1}{18x^{2}+162} dx}[/mm]
>  
> Die ersten beiden Integrale sind ja relativ leicht mit dem
> nat. Logarithmus zu berechnen. Aber was mach ich mit dem
> letzten Term? Substituieren?

Ja. Mit [mm] $t=\frac [/mm] 1 3 [mm] x\,.$ [/mm]

EDIT: Verbessert.

Gruß,
Wolfgang

Bezug
                
Bezug
Finde die Stammfunktion...: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:25 Mo 21.01.2013
Autor: Paivren

Hey Helbig,

kurz aber deftig, es funktioniert!

Vielen Dank!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]