matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperFinde den Unterring
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Finde den Unterring
Finde den Unterring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Finde den Unterring: Tipp
Status: (Frage) überfällig Status 
Datum: 21:18 Fr 15.11.2013
Autor: pablovschby

Aufgabe
Sei q eine Primzahl. Finde den Unterring U des Matrixringes [mm] K:=\IF_p^{q \times q} [/mm] mit den Eigenschaften

- U ist ein [mm] \IF_p [/mm] Vektorraum mit Dimension > 1
- die Eins (Identität) ist enthalten
- jede Matrix, die nicht ein Vielfaches der Eins ist, hat ein irreduzibles charakteristisches Polynom

Zeigen Sie auch, dass die Eigenschaften gelten!


Guten Abend miteinander

Ich habe nicht wirklich Ideen, wie ich das angehen soll.

Ist jede Matrix mit einem irreduziblen Polynom als charakteristisches Polynom schon ein Generator von K ? Muss die Matrix, damit sie ein Generator ist, nicht ein primitives Polynom als char. Polynom haben, weil sonst nicht immer folgt, dass ihre Ordnung maximal ist?

Die Ordnung in [mm] \IF_p [/mm] ist [mm] \Phi(p), [/mm] wobei [mm] \Phi [/mm] die Euler-Phi Funktion ist. Es steht in der Aufgabe aber nirgends, dass auch p eine Primzahl ist? Dann wäre die Ordnung  in [mm] \IF_p [/mm] p-1 .

Inwiefern spielt q eine Rolle? Nilpotente Matrizen hätten also Nilpotenzindex kleiner gleich q-1 ?

Ist die Ordnung [mm] $q^{2^p} [/mm]  -1 $ ? Warum? Es ist doch ein [mm] \IF_p [/mm] Vektorraum?

Sorry, ich finde keinen sinnvollen Ansatz. p müsste doch eine Primzahl sein? Habt ihr vlt. Ideen?

Grüsse



        
Bezug
Finde den Unterring: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mo 18.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Finde den Unterring: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:08 Di 19.11.2013
Autor: felixf

Moin,

> Sei q eine Primzahl. Finde den Unterring U des Matrixringes
> [mm]K:=\IF_p^{q \times q}[/mm] mit den Eigenschaften
>  
> - U ist ein [mm]\IF_p[/mm] Vektorraum mit Dimension > 1
> - die Eins (Identität) ist enthalten
>  - jede Matrix, die nicht ein Vielfaches der Eins ist, hat
> ein irreduzibles charakteristisches Polynom
>  
> Zeigen Sie auch, dass die Eigenschaften gelten!
>  
> Guten Abend miteinander
>  
> Ich habe nicht wirklich Ideen, wie ich das angehen soll.
>  
> Ist jede Matrix mit einem irreduziblen Polynom als
> charakteristisches Polynom schon ein Generator von K ? Muss
> die Matrix, damit sie ein Generator ist, nicht ein
> primitives Polynom als char. Polynom haben, weil sonst
> nicht immer folgt, dass ihre Ordnung maximal ist?

Nein, es reicht aus, wenn es irreduzibel ist.

> Die Ordnung in [mm]\IF_p[/mm] ist [mm]\Phi(p),[/mm] wobei [mm]\Phi[/mm] die Euler-Phi
> Funktion ist. Es steht in der Aufgabe aber nirgends, dass
> auch p eine Primzahl ist? Dann wäre die Ordnung  in [mm]\IF_p[/mm]
> p-1 .

Es reicht aus, dass $p$ eine Primzahlpotenz ist: dann gibt es einen endlichen Koerper der Ordnung $p$, naemlich [mm] $\IF_p$. [/mm]

> Inwiefern spielt q eine Rolle?

Schau dir den Koerper [mm] $\IF_{p^q}$ [/mm] an. Diesen kannst du als Unterring von [mm] $\IF_p^{q \times q}$ [/mm] realisieren; der Unterring hat dann die Dimension $q$ ueber [mm] $\IF_p$. [/mm] Weiterhin ist das char. Polynom einer jeden solchen Matrix das char. Polynom des entsprechenden Elementes von [mm] $\IF_{p^q}$ [/mm] ueber [mm] $\IF_p$, [/mm] und somit nach dem Gradsatz entweder irreduzibel oder von der Form $(X - [mm] \lambda)^q$. [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]