matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFibonaccische Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Fibonaccische Zahlen
Fibonaccische Zahlen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fibonaccische Zahlen: Rekursionsformel?
Status: (Frage) beantwortet Status 
Datum: 10:27 Sa 04.11.2006
Autor: sorry_lb

Aufgabe
Die Fibonaccischen Zahlen [mm] f_{n} [/mm] sind definiert durch die Vorschrift [mm] f_{0} [/mm] = [mm] f_{1} [/mm] =1 und [mm] f_{n} [/mm] = [mm] f_{n-2} [/mm] + [mm] f_{n-1} [/mm] für n [mm] \in \IN [/mm] , n [mm] \ge [/mm] 2. Zeigen Sie, dass die Zahlenfolge [mm] (a_{n}) [/mm] für n=1 gegen unendlich mit
[mm] a_{n} [/mm] = [mm] \bruch{ f_{n} }{ f_{n-1} } [/mm] konvergiert und Berechnen Sie den Grenzwert.

Guten morgen.
Also wir haben als Tipp erhalten, die Rekursionsformel für die Berechnung der [mm] a_{n} [/mm] herzuleiten und zunächst zu zeigen, dass die Teilfolge [mm] (a_{2k}) [/mm] für k=1 gegen unendlich der geraden Glieder monoton fallend und beschränkt ist.

Und zu meiner Schande muss ich fragen, was ist die Rekursionsformel???



        
Bezug
Fibonaccische Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:41 Sa 04.11.2006
Autor: Schwangerepaepstin

Hallo sorry_lb,,
hier eine kleine Hilfe zu deinem Problem. Eine Schande ist es nicht. Fibonacci ist nicht ganz so einfach, daran scheitern tagtäglich auch so manche Börsianer.

[]http://www.wissenschaft-online.de/spektrum/projekt/quasi3.htm

Gruß

Hubert.

Bezug
        
Bezug
Fibonaccische Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:42 Sa 04.11.2006
Autor: jbulling

Hallo Sorry,

die Rekursionsformel ist die hier:

$ [mm] f_{n} [/mm] $ = $ [mm] f_{n-2} [/mm] $ + $ [mm] f_{n-1} [/mm] $

sie heisst so, weil die Berechnung des Wertes für ein n auf die Berechnung kleinerer Werte zurückgeführt wird. Eigentlich ist die vollständige Rekursionsformel die hier:

$ [mm] f_{n} [/mm] = [mm] f_{n-2} [/mm] + [mm] f_{n-1} [/mm] + [n=1] $    (mit f(n)=0 für n [mm] \le [/mm] 0)

Das Glied [n=1] ist 1 für n=1 und 0 sonst.

Eigentlich musst Du das aber gar nicht wissen für Deinen Fall, weil du ja die Formel für große n anwendest, damit reicht die oben angegebene Formel schon aus.

Du musst also

[mm] \bruch {f_{n}} {f_{n-1}} [/mm] = [mm] \bruch {f_{n-1} + f_{n-2}} {f_{n-1}} [/mm]

für große n betrachten.

Gruß
Jürgen



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]