matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFibonacci-Zahlen, Grenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Fibonacci-Zahlen, Grenzwert
Fibonacci-Zahlen, Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fibonacci-Zahlen, Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:18 Mi 19.05.2010
Autor: Calculu

Aufgabe
Zeigen Sie, dass der Grenzwert [mm] \limes_{n\rightarrow\infty}\bruch{F _{n+1}}{F_n} [/mm] existiert und berechnen Sie ihn.

So, also ich möchte berechnen. Kann ich die Formel von Moive Binet einsetzen und Zähler und Nenner getrennt betrachten, oder ist das nicht zulässig?

Viele Dank

Calculu

        
Bezug
Fibonacci-Zahlen, Grenzwert: nicht getrennt
Status: (Antwort) fertig Status 
Datum: 13:22 Mi 19.05.2010
Autor: Roadrunner

Hallo Calculu!


Wenn die []Formel nach Moivre-Binet bekannt ist, darfst Du diese auch gerne verwenden.

Allerdings darfst Du nicht Zähler und Nenner getrannt behandeln: schließlich steigt die Fibonacci-Folge über alle Grenzen.


Gruß vom
Roadrunner


Bezug
                
Bezug
Fibonacci-Zahlen, Grenzwert: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:27 Mi 19.05.2010
Autor: Calculu

Hm, ok.
Also die Formel ist bekannt. Funktioniert es dann nur durch geschicktes umformen und letztlich irgendwie Hauptnenner bilden oder muss ich etwas abschätzen.
Ein Tipp wäre sehr cool ;-)

VG

Bezug
                        
Bezug
Fibonacci-Zahlen, Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 14:09 Mi 19.05.2010
Autor: angela.h.b.


> Hm, ok.
> Also die Formel ist bekannt. Funktioniert es dann nur durch
> geschicktes umformen und letztlich irgendwie Hauptnenner
> bilden oder muss ich etwas abschätzen.

Hallo,

abschätzen muß ich nichts, sondern oben und unten ausklammern, kürzen und den Grenzwert bilden.

Einen konkreten Tip kann man sicher besser geben, wenn man sieht, was Du bisher getan hast...

Gruß v. Angela

Bezug
                                
Bezug
Fibonacci-Zahlen, Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:27 Mi 19.05.2010
Autor: Calculu

Ok, also ich habe bis jetzt folgendes gemacht:

[mm] \limes_{n\rightarrow\infty} \bruch{Fn+1}{Fn} [/mm]

= [mm] \limes_{n\rightarrow\infty} \bruch{\bruch{1}{\wurzel{5}}*((\bruch{1+\wurzel{5}}{5})^{n+1}-(\bruch{1-\wurzel{5}}{5})^{n+1})}{\bruch{1}{\wurzel{5}}*((\bruch{1+\wurzel{5}}{5})^{n}-(\bruch{1-\wurzel{5}}{5})^{n})} [/mm]

=  [mm] \limes_{n\rightarrow\infty} \bruch{((\bruch{1+\wurzel{5}}{5})^{n+1}-(\bruch{1-\wurzel{5}}{5})^{n+1})}{((\bruch{1+\wurzel{5}}{5})^{n}-(\bruch{1-\wurzel{5}}{5})^{n})} [/mm]

=  [mm] \limes_{n\rightarrow\infty} \bruch{(\bruch{1+\wurzel{5}}{5})^{n}*\bruch{1+\wurzel{5}}{5}-(\bruch{1-\wurzel{5}}{5})^{n}*\bruch{1-\wurzel{5}}{5}}{((\bruch{1+\wurzel{5}}{5})^{n}-(\bruch{1-\wurzel{5}}{5})^{n})} [/mm]


So, und jetzt stören mich das Minus bei [mm] 1-\wurzel{5} [/mm]
Ansonsten könnte ich ja ausklammern...


Bezug
                                        
Bezug
Fibonacci-Zahlen, Grenzwert: Polynomdivision
Status: (Antwort) fertig Status 
Datum: 14:49 Mi 19.05.2010
Autor: Roadrunner

Hallo Calculu!


> = [mm]\limes_{n\rightarrow\infty} \bruch{\bruch{1}{\wurzel{5}}*((\bruch{1+\wurzel{5}}{5})^{n+1}-(\bruch{1-\wurzel{5}}{5})^{n+1})}{\bruch{1}{\wurzel{5}}*((\bruch{1+\wurzel{5}}{5})^{n}-(\bruch{1-\wurzel{5}}{5})^{n})}[/mm]
>  
> =  [mm]\limes_{n\rightarrow\infty} \bruch{((\bruch{1+\wurzel{5}}{5})^{n+1}-(\bruch{1-\wurzel{5}}{5})^{n+1})}{((\bruch{1+\wurzel{5}}{5})^{n}-(\bruch{1-\wurzel{5}}{5})^{n})}[/mm]

[ok] Und nun klammere in Zähler und Nenner den Term [mm] $\left(\bruch{1+\wurzel{5}}{5}-\bruch{1-\wurzel{5}}{5}\right)$ [/mm] aus
(Stichwort: MBPolynomdivision).


Bedenke, dass gilt:
[mm] $$a^{n+1}-b^{n+1} [/mm] \ = \ [mm] (a-b)*\left(a^{n}+a^{n-1}*b+a^{n-2}*b^2+...+a*b^{n-1}+b^{n}\right)$$ [/mm]

Gruß vom
Roadrunner


Bezug
                                                
Bezug
Fibonacci-Zahlen, Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:07 Mi 19.05.2010
Autor: Calculu

Ok, schonmal vielen Dank. Ich muss gleich arbeiten gehen. Meld mich später wieder.

Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]