matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenFibonacci-Folge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Fibonacci-Folge
Fibonacci-Folge < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fibonacci-Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 Mo 09.07.2012
Autor: Mausibaerle

Aufgabe
Es soll die Fibonacci-Folge [mm] f_{n+1}=f_{n}+f_{n-1} [/mm] mit [mm] f_{0}=0 f_{1}=1 [/mm] untersucht werden.
Geben Sie die Matrix F an, so dass

[mm] \pmat{ f_{n} \\ f_{n+1} } [/mm] = [mm] \pmat{ F11 & F12\\ F21 & F22 } \pmat{ f_{n-1} \\ f_{n} } [/mm]

Hallo Ihr Lieben,

habe diese Aufgabenstellung gefunden aber weiß nichts mit dem Ansatz anzufangen. Was die Fibonacci-Folge ist, weiß ich. Wie komme ich aber von diesem Ansatz zu meiner Matrix F?

Besten Dank im Voraus!!

        
Bezug
Fibonacci-Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Mo 09.07.2012
Autor: Adamantin


> Es soll die Fibonacci-Folge [mm]f_{n+1}=f_{n}+f_{n-1}[/mm] mit
> [mm]f_{0}=0 f_{1}=1[/mm] untersucht werden.
> Geben Sie die Matrix F an, so dass
>  
> [mm]\pmat{ f_{n} \\ f_{n+1} }[/mm] = [mm]\pmat{ F11 & F12\\ F21 & F22 } \pmat{ f_{n-1} \\ f_{n} }[/mm]
>  
> Hallo Ihr Lieben,
>  
> habe diese Aufgabenstellung gefunden aber weiß nichts mit
> dem Ansatz anzufangen. Was die Fibonacci-Folge ist, weiß
> ich. Wie komme ich aber von diesem Ansatz zu meiner Matrix
> F?
>  
> Besten Dank im Voraus!!

Du sollst eine Matrix bestimmen, so dass gilt:
[mm] $F_{11}*f_{n-1}+F_{12}*f_n=f_n$ [/mm]
[mm] $F_{21}*f_{n-1}+F_{22}*f_n=f_{n+1}$ [/mm]

Das solltest du mit probieren eigentlich sofort lösen können ;)


Bezug
                
Bezug
Fibonacci-Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Mo 09.07.2012
Autor: Mausibaerle

welche Werte setze ich denn für die F, [mm] f_{n-1}, f_{n} [/mm] ein?!

Bezug
                        
Bezug
Fibonacci-Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 Mo 09.07.2012
Autor: Adamantin


> welche Werte setze ich denn für die F, [mm]f_{n-1}, f_{n}[/mm]
> ein?!

Öhm..gar keine? Du sollst eine Matrix angeben, so dass der Zusammenhang allgemein gilt! Also wähle einfach 4 Zahlen für [mm] $F_{11}$ [/mm] bis [mm] $F_{22}$ [/mm] So dass die Gleichung erfüllt ist. Danach kannst du es mit Zahlenbeispielen überprüfen.

Also Gleichung eins ist trivial:
[mm] $f_n=0*f_{n-1}+1f_n$ [/mm] oder? Jetzt du

Bezug
                                
Bezug
Fibonacci-Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 Mo 09.07.2012
Autor: Mausibaerle

[mm] f_{n+1}=\bruch{2}{f_{n}}f_{n-1}+1*f_{n} [/mm]

Oder mach ich es komplizierter als es ist?

Bezug
                                        
Bezug
Fibonacci-Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Mo 09.07.2012
Autor: ms2008de

Hallo,
> [mm]f_{n+1}=\bruch{2}{f_{n}}f_{n-1}+1*f_{n}[/mm]
>  
> Oder mach ich es komplizierter als es ist?

Ja das tust du. Denk an die Voraussetzung: [mm] f_{n+1}= f_{n-1}+f_{n}. [/mm]

Viele Grüße

Bezug
                                                
Bezug
Fibonacci-Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:42 Mo 09.07.2012
Autor: Mausibaerle

[mm] \bruch {f_{n-1}}{f_{n-1}}+1f_{n} [/mm] ?!

Mehr Ideen habe ich jetzt wikrlich nicht :)

Bezug
                                                        
Bezug
Fibonacci-Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 Mo 09.07.2012
Autor: Adamantin

Du sollst diese Gleichung lösen:

[mm] $f_{n+1}=F_{21}*f_{n-1}+F_{22}*f_n$ [/mm]

Da wir wissen, dass das linke gerade die Summe aus den rechten Teiltermen ist, sind einfach beide Koeffizienten 1!

[mm] $f_{n+1}=1*f_{n-1}+1*f_n$ [/mm]

Fertig.

Bezug
                                                                
Bezug
Fibonacci-Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Mo 09.07.2012
Autor: Mausibaerle

Das heißt meine Matrix F ist [mm] \pmat{ 0 & 1 \\ 1 & 1 }?! [/mm]

Bezug
                                                                        
Bezug
Fibonacci-Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 20:29 Mo 09.07.2012
Autor: ms2008de


> Das heißt meine Matrix F ist [mm]\pmat{ 0 & 1 \\ 1 & 1 }?![/mm]  

exakt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]