matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFensterfläche berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Fensterfläche berechnen
Fensterfläche berechnen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fensterfläche berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Di 21.04.2009
Autor: Schmaddi

Aufgabe
Gegeben ist eine rechteckige Mauer mit den Maßen 12x8, Eckpunkte a, b, c, d. In diese Mauer soll ein parabelförmiges Fenster eingesetzt werden. Der höchste Punkt der Parabel liegt bei 6. Wie groß ist die Fensterfläche?

Ich weiß, dass die Grundformel für eine Parabel f(x) = [mm] x^2 [/mm] heißt. Die Stammfunktion lautet F(x) = [mm] x^3/3. [/mm] Ansonsten habe ich keine Idee, wie ich an die Aufgabe rangehen soll. Muss ich Nullstellen oder Schnittpunkte errechnen? Bitte um ein paar Tipps.

        
Bezug
Fensterfläche berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 Di 21.04.2009
Autor: abakus


> Gegeben ist eine rechteckige Mauer mit den Maßen 12x8,
> Eckpunkte a, b, c, d. In diese Mauer soll ein
> parabelförmiges Fenster eingesetzt werden. Der höchste
> Punkt der Parabel liegt bei 6. Wie groß ist die
> Fensterfläche?

Hallo,
die Aufgabe ist nicht eindeutig lösbar. Es handelt sich um eine (allgemeine) Parabel, nicht unbedingt um die Normalparabel (oder hast du einen Teil der Formulierung unterschlagen?).
Wenn der höchste Punkt "bei 6" liegt, wäre die Gleichung [mm] y=6-x^2 [/mm] oder [mm] 6-2x^2 [/mm] oder [mm] 6-0,5x^2 [/mm] oder...
Gruß Abakus

>  Ich weiß, dass die Grundformel für eine Parabel f(x) = [mm]x^2[/mm]
> heißt. Die Stammfunktion lautet F(x) = [mm]x^3/3.[/mm] Ansonsten
> habe ich keine Idee, wie ich an die Aufgabe rangehen soll.
> Muss ich Nullstellen oder Schnittpunkte errechnen? Bitte um
> ein paar Tipps.


Bezug
                
Bezug
Fensterfläche berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Di 21.04.2009
Autor: Schmaddi

Hallo. Die exakte Aufgabenstellung lautet:
Das Rechteck abcd stellt den Querschnitt einer Mauer (12m x 8m) dar. In die Mauer wird ein Fenster eingelassen, welches der Fläche unter dem Parabelbogen entspricht. Der höchste Punkt der Parabel befindet sich auf 6m Höhe. Berechnen Sie die Fläche des Fensters. (Zu der Aufgabe ist noch eine Skizze gereicht, der Parabelbogen geht von der linken unteren Ecke der Mauer bis zur rechten, also erstreckt sich über 12m)

Bezug
                        
Bezug
Fensterfläche berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 Di 21.04.2009
Autor: leduart

Hallo
Nimm die Unterkannte der Mauer als x-Achse, die y Achse in der Mitte.
dann kennst du 3 Punkte der Parabel und kannst sie dadurch bestimmen. Am besten verwendest du gleich die Scheitelform, da du den ja kennst und dann nur noch den Punkt (6,0)
Die Flaeche kriegst du dann durch Integration von -6 bis +6
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]