matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenFehlerschrankensatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Fehlerschrankensatz
Fehlerschrankensatz < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerschrankensatz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:49 Di 02.12.2014
Autor: fuoor

Aufgabe
Bei einer Geschwindigkeitsmessung der Polizei wird gemessen, wieviel Zeit vorbeifahrende Fahrzeuge benötigen, um einen ca. 210 m langen Streckenabschnitt zurückzulegen. Dabei werden eine Messfehlertoleranz der Strecke von [mm] \pm [/mm] 5m und [mm] \pm [/mm] 0,5s in der Zeit angenommen.Fürr ein Taxi wurde eine Zeit von t=10,5 s gemessen. Berechnen Sie die gemessene Durchschnittsgeschwindigkeit des Taxis auf dem Streckenabschnitt. Berechnen Sie weiter mit Hilfe des Fehlerschrankensatzes die Durchschnittsgeschwindigkeit, mit der sich das Taxi mindestens bewegt haben muss.

Hinweis: Für die Durchschnittsgeschwindigkeit v gilt [mm] v(s,t)=\bruch{s}{t}. [/mm] Die erlaubten 50km/h überschreitet das Taxi deutlich, es gilt 1m/s=3,6km/h.

Die gemssene Durchschnittsgeschwindigkeit errrechne ich durch

[mm] v(210m,10,5s)=\bruch{210m}{10,5s}=20m/s. [/mm]

Nun multipliziere ich das Ganze mit 3,6 damit ich auf km/h komme. Das Ergebnis ist dann 72 km/h. Die Durchschnittsgeschwindigkeit des Taxis beträgt also 72km/h.

Nun zum Fehlerschrankensatz. Zuerst berechne ich die partiellen Ableitungen. Für [mm] v(s,t)=\bruch{s}{t} [/mm] gilt

[mm] \bruch{\delta v}{\delta s}(s,t)=\bruch{1}{t} [/mm]
sowie
[mm] \bruch{\delta v}{\delta t}(s,t)=\bruch{-s}{t^{2}} [/mm]

Für s [mm] \in [/mm] [205m, 215m] und t [mm] \in [/mm] [10s, 11s] gilt dann

[mm] \left| \bruch{\delta v}{\delta s}(s,t) \right| \le \bruch{1}{10} \le [/mm] 0,1 =: [mm] M_{1} [/mm]

[mm] \left| \bruch{\delta v}{\delta t}(s,t) \right| \le \bruch{215}{10^{2}} \le \bruch{43}{20} [/mm] =: [mm] M_{2} [/mm]

Nach dem Fehlerschrankensatz gilt also für s [mm] \in [/mm] [205m, 215m] und t [mm] \in [/mm] [10s, 11s] mit [mm] s_{0}=210m, t_{0}=10,5s, v(s_{0}, t_{0})=20m/s [/mm] sowie [mm] \delta [/mm] s=5m, [mm] \delta [/mm] t=0,5s:

[mm] |v(s_{0}+\delta [/mm] s , [mm] t_{0}+\delta t)-v(s_{0}, t_{0})| \le M_{1} [/mm] * [mm] |\delta s|+M_{2}*|\delta [/mm] t| [mm] \le \bruch{1}{10}*5+\bruch{43}{20}*0,5=63/40 [/mm]


Mit dem Fehlerschrankensatz ist also [mm] [20m/s-\bruch{63}{40}, 20m/s+\bruch{63}{40}]=[18,425m/s, [/mm] 21,575m/s].

Umgerechnet in km/h ergibt das [66,33km/h, 77,67km/h]

Irgendwas kommt mir aber komisch vor. Hätte ich den Faktor 3,6 direkt mit einbeziehen sollen? Ist die Abschätzung von mir falsch?

Vielen Dank für den Support.

        
Bezug
Fehlerschrankensatz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Do 04.12.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]