matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungFehlerquoten-Bsp.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitsrechnung" - Fehlerquoten-Bsp.
Fehlerquoten-Bsp. < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerquoten-Bsp.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:54 Mi 20.09.2006
Autor: ClausVogelmann

Aufgabe
Eine Samenhandlung verkauft Briefchen, die je 200 Samen mit Sortenreinheit von 98% enthalten. Wie groß ist die Wahrscheinlichkeit, dass in einem solchen Päckchen (1) mehr als 6, (2) genau 6, (3) mind. 6 falsche Samen enthalten sind?

Bin leider noch nicht auf den Lösungsweg gekommen. Hoffe jemand kann mir helfen!!
Vielen Dank im Voraus!

Lg Claus

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fehlerquoten-Bsp.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:24 Mi 20.09.2006
Autor: VNV_Tommy

Hallo Claus!

[willkommenmr]

> Eine Samenhandlung verkauft Briefchen, die je 200 Samen mit
> Sortenreinheit von 98% enthalten.

Wir halten fest: Mit einer Wahrscheinlichkeit von 2% befindet sich ein falscher Samen im Briefchen. [mm] \Rightarrow [/mm] p=0,02.
n=200

> Wie groß ist die Wahrscheinlichkeit, dass in einem solchen Päckchen (1) mehr
> als 6, (2) genau 6, (3) mind. 6 falsche Samen enthalten
> sind?

Es gilt also zu berechnen:
(1) P(k>6)
(2) P(k=6)
(3) P(k>=6)

>  Bin leider noch nicht auf den Lösungsweg gekommen. Hoffe
> jemand kann mir helfen!!
>  Vielen Dank im Voraus!
>  
> Lg Claus
>  
> PS: Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Zu (1):
Die Wahrscheinlichkeit [mm]P(k>6)[/mm] entspricht [mm]1-P(k=6)[/mm] . Es gilt also [mm]P(k>6)=1-P(k=6)[/mm] . Das heisst: Die Wahrscheinlichkeit, daß 6 oder mehr Samen falsch sind entspricht 100% abzüglich der Wahrscheinlichkeit, daß genau 6 Samen falsch sin. An dieser Stelle sieht man mal wieder wie gemein Lehrer sein können, denn [mm]P(k=6)[/mm] muss erst bei (2) ermittelt werden, es hilft aber schon bei (1) den Lösungsweg erheblich zu vereinfachen. Diese Herangehensweise ist bei Lehrern sehr beliebt. Hier gilt also: erst (2) lösen, dann (1)!

Zu (2):
Es ergibt sich [mm] P(k)\overbrace{=}^{Binomialverteilung}\vektor{n \\ k}*p^{k}*(1-p)^{n-k} [/mm] .
Somit kannst du die Wahrscheinlichkeit, daß genau 6 Samen falsch sind wie folgt berechnen:
[mm] P(k=6)=\vektor{200 \\ 6}*0,02^{6}*0,98^{194} [/mm]

Mit diesem Wissen kannst du dann (1) sehr leicht lösen.

Zu (3):
Die Wahrscheinlichkeit, daß mindestens 6 Samen sind entspricht 100% abzüglich des Ereignisses, daß genau 5 Samen falsch sind. Du kannst somit berechnen [mm]P(k>=6)=1-P(k=5)[/mm] .
[mm]P(k=5)[/mm] berechnest du wieder mit der Binomialverteilung:
[mm] P(k=5)=\vektor{ 200 \\ 5}*0,02^{5}*0,98^{195} [/mm]

(Hinweis: die Werte für die Wahrscheinlichkeiten hab ich aus Zeitmangel noch nicht berechnen können. Vielleicht kann das ein anderer mal eben schnell nachholen ;-) )

Beachte: [mm] \vektor{ n \\ k} [/mm] (sprich 'n über k') wird wie folgt berechnet:
[mm] \vektor{n \\ k}=\bruch{n!}{k!*(n-k)!} [/mm]

Gruß,
Tommy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]