matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenFehlerfortpflanzung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Partielle Differentialgleichungen" - Fehlerfortpflanzung
Fehlerfortpflanzung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerfortpflanzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 So 13.04.2008
Autor: tedd

Aufgabe
Fehlerfortpflanzung bei Wellenlänge für Physikpraktikumsversuch.

Also ich wollte mal fragen ob ich die Formel richtig abgeleitet habe.
Und zwar habe ich folgende Formel um Wellenlängen zu
berechnen.

[mm]\lambda(l,a)=sin\left (arctan\left (\bruch{a}{l}\right )\right )*g[/mm]

Die Partielle Ableitung von [mm]\bruch{a}{l}[/mm] nach l wäre ja
[mm]\bruch{-a}{l^2}[/mm]
Die partielle Ableitung von [mm]\bruch{a}{l}[/mm] nach a:
[mm]\bruch{l}{l^2}=\bruch{1}{l}[/mm]

[mm]arctan(v)'=\bruch{1}{v^2+1}[/mm]

[mm]sin(u)'=cos(u)[/mm]

Ich bin mir jetzt nicht sicher was mit dem g passiert, bleibt das einfach stehen?

also
[mm]\bruch{\delta\lambda}{\delta l}=\bruch{1}{1+\bruch{a}{l}^2}*\bruch{-a}{l^2}*cos\left (arctan\left (\bruch{a}{l}\right )\right )*g[/mm]

und

[mm]\bruch{\delta\lambda}{\delta a}=\bruch{1}{1+\bruch{a}{l}^2}*\bruch{1}{l}*cos\left (arctan\left (\bruch{a}{l}\right )\right )*g[/mm]

und für die Fehlerforpflanzung dann:
[mm]\Delta\lambda=\left (\bruch{1}{1+\bruch{a}{l}^2}*\bruch{-a}{l^2}*cos\left (arctan\left (\bruch{a}{l}\right )\right )*g*\Delta l\right ) +\left(\bruch{1}{1+\bruch{a}{l}^2}*\bruch{1}{l}*cos\left (arctan\left (\bruch{a}{l}\right )\right )*g*\Delta a\right )[/mm]
?
Sieht in meinen Augen richtig aus aber ich bin mir noch was unsicher mit partiellen Ableitungen und Ableitungen generell deswegen wollte ich hier nochmal nachfragen,
Danke schonmal im vorraus für's drüberschauen und beste Grüße,
tedd

        
Bezug
Fehlerfortpflanzung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 So 13.04.2008
Autor: MathePower

Hallo tedd,

> Fehlerfortpflanzung bei Wellenlänge für
> Physikpraktikumsversuch.
>  Also ich wollte mal fragen ob ich die Formel richtig
> abgeleitet habe.
>  Und zwar habe ich folgende Formel um Wellenlängen zu
> berechnen.
>  
> [mm]\lambda(l,a)=sin\left (arctan\left (\bruch{a}{l}\right )\right )*g[/mm]
>  
> Die Partielle Ableitung von [mm]\bruch{a}{l}[/mm] nach l wäre ja
>  [mm]\bruch{-a}{l^2}[/mm]

[ok]

>  Die partielle Ableitung von [mm]\bruch{a}{l}[/mm] nach a:
>  [mm]\bruch{l}{l^2}=\bruch{1}{l}[/mm]

[ok]

>  
> [mm]arctan(v)'=\bruch{1}{v^2+1}[/mm]
>  
> [mm]sin(u)'=cos(u)[/mm]
>  
> Ich bin mir jetzt nicht sicher was mit dem g passiert,
> bleibt das einfach stehen?

Ja, das g wird nur mitgeschleppt, ist hier eine Konstante.

>  
> also
> [mm]\bruch{\delta\lambda}{\delta l}=\bruch{1}{1+\bruch{a}{l}^2}*\bruch{-a}{l^2}*cos\left (arctan\left (\bruch{a}{l}\right )\right )*g[/mm]

Um den Ausdruck [mm]\bruch{a}{l}[/mm] wolltest Du sicherlich ne Klammer setzen:

[mm]\bruch{\delta\lambda}{\delta l}=\bruch{1}{1+\red{\left(}\bruch{a}{l}\red{\right)}^2}*\bruch{-a}{l^2}*cos\left (arctan\left (\bruch{a}{l}\right )\right )*g[/mm]

>  
> und
>  
> [mm]\bruch{\delta\lambda}{\delta a}=\bruch{1}{1+\bruch{a}{l}^2}*\bruch{1}{l}*cos\left (arctan\left (\bruch{a}{l}\right )\right )*g[/mm]
>  

Dasselbe gilt hier:

[mm]\bruch{\delta\lambda}{\delta a}=\bruch{1}{1+\red{\left(}\bruch{a}{l}\red{\right)}^2}*\bruch{1}{l}*cos\left (arctan\left (\bruch{a}{l}\right )\right )*g[/mm]

> und für die Fehlerforpflanzung dann:
>  [mm]\Delta\lambda=\left (\bruch{1}{1+\bruch{a}{l}^2}*\bruch{-a}{l^2}*cos\left (arctan\left (\bruch{a}{l}\right )\right )*g*\Delta l\right ) +\left(\bruch{1}{1+\bruch{a}{l}^2}*\bruch{1}{l}*cos\left (arctan\left (\bruch{a}{l}\right )\right )*g*\Delta a\right )[/mm]
>  

[mm]\Delta\lambda=\left (\bruch{1}{1+\red{\left(}\bruch{a}{l}\red{\right)}^2}*\bruch{-a}{l^2}*cos\left (arctan\left (\bruch{a}{l}\right )\right )*g*\Delta l\right ) +\left(\bruch{1}{1+\red{\left(}\bruch{a}{l}\red{\right)}^2}*\bruch{1}{l}*cos\left (arctan\left (\bruch{a}{l}\right )\right )*g*\Delta a\right )[/mm]

Es kann ja sein, dass sich die Fehler gegenseitig aufheben, deshalb:

[mm]\Delta\lambda=\left \vmat{\bruch{1}{1+\red{\left(}\bruch{a}{l}\red{\right)}^2}*\bruch{-a}{l^2}*cos\left (arctan\left (\bruch{a}{l}\right )\right )*g}*\Delta {l}+\vmat{\bruch{1}{1+\red{\left(}\bruch{a}{l}\red{\right)}^2}*\bruch{1}{l}*cos\left (arctan\left (\bruch{a}{l}\right )\right )*g}*\Delta{a}[/mm]


> ?
>  Sieht in meinen Augen richtig aus aber ich bin mir noch
> was unsicher mit partiellen Ableitungen und Ableitungen
> generell deswegen wollte ich hier nochmal nachfragen,

[mm]\cos\left(\arctan\left(\bruch{a}{l}\right)\right)[/mm] läßt sich auch noch anders schreiben.

>  Danke schonmal im vorraus für's drüberschauen und beste
> Grüße,
>  tedd

Gruß
MathePower

Bezug
                
Bezug
Fehlerfortpflanzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:07 So 13.04.2008
Autor: tedd

Danke für die Antwort.
Die Klammern wollte ich eigtl machen sind dann aber im latex code irgendwie untergegangen.
Das mit den beträgen wusste ich nicht, danke für den Hinweis.


[mm]cos\left (arctan\left (\bruch{a}{l}\right )\right )=\bruch{1}{\sqrt{1+\left(\bruch{a}{l}\right)^2}[/mm]?

Bezug
                        
Bezug
Fehlerfortpflanzung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 So 13.04.2008
Autor: MathePower

Hallo tedd,

> Danke für die Antwort.
>  Die Klammern wollte ich eigtl machen sind dann aber im
> latex code irgendwie untergegangen.
>  Das mit den beträgen wusste ich nicht, danke für den
> Hinweis.
>  
>
> [mm]cos\left(arctan\left (\bruch{a}{l}\right )\right )=\bruch{1}{\sqrt{1+\left(\bruch{a}{l}\right)^2}[/mm]?

Ja. [ok]

Noch weiter vereinfacht:

[mm]cos\left( \ \arctan\left(\ \bruch{a}{l}\ \right) \ \right) =\bruch{1}{\wurzel{1+\left(\bruch{a}{l}\right)^2} }=\bruch{l}{\wurzel{l^{2}+{a}^2}[/mm]

Gruß
MathePower

Bezug
                                
Bezug
Fehlerfortpflanzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:25 So 13.04.2008
Autor: tedd

Hey MathePower - Vielen Dank für die Hilfe ;)
Betsen Gruß,
tedd

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]