matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikFehlerfortpflanzung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Fehlerfortpflanzung
Fehlerfortpflanzung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerfortpflanzung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:22 Do 16.08.2007
Autor: Hydrazin

hallo!

Ich habe gleich zwei Probleme:
Zum einen habe ich Funktionswerte f(x) mit einer Standardabweichung.
Diese Funktionswerte (Messwerte) werden nun reziprok aufgetragen, also 1/f(x) gegen konstante x-Werte, diese Funktion ist linear , z. B. k*x+d

Wie kann ich nun die Standardabweichung "mitnehmen"?
Meine Anwendung der Gauss´schen Fehlerfortpflanzung liefert "merkwürdige" Werte, z. B.
f(x)=1000 [mm] \pm [/mm] 10
dann muss man doch eine Taylorreihenentwicklung machen, die so aussieht: 1. Ableitung der linearen Funktion liefert den k-Wert, bei z. B.
0.0002*x+d
muss man für den Gauss´

0.0002 * "die zu transformierende Größe"
rechnen (weil die höheren Glieder ja 0 sind), oder? Bei mir kommt dann 0.002 raus. Dies ist aber größer als der 1/f(x)-Wert, der dann ja 0.001 ist...
Hab ich da irgendwas falsch gemacht (bzw. was?)?

Mein zweites, größeres Problem ist folgendes:
Aus z. B. acht 1/f(x)-Werten bekomme ich dann die entsprechende lineare Funktion, k*x+d raus, wobei k für mich die entsprechende interessante Größe ist. Nun möchte ich für die Steigung gerne eine Standardabweichung oder eine entsprechend andere statistische Größe angeben -> wie kann ich das machen? Könnte ich für deren Varianz einfach

[mm] \bruch{1}{N-1}*\summe_{i=1}^{n}(x_{i}-\overline{x})^{2} [/mm]

rechnen, wobei xi mein 1/f(x)-Wert ist und [mm] \overline{x} [/mm] mein gefitteter und aus der Gleichung errechneter Wert ist...?

Ich benötige diese Informationen für eine Facharbeit, aber eigentlich geht es mir darum, nicht einfach nur Daten aus dem Origin abzuschreiben, sondern zumindest zu wissen, wie diese Daten verarbeitet werden...





        
Bezug
Fehlerfortpflanzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 Do 16.08.2007
Autor: Hydrazin

jetzt hab ich doch ganz vergessen, mich mal im vorhinein zu bedanken...
somit: vielen Dank im Voraus und liebe Grüße...



Bezug
        
Bezug
Fehlerfortpflanzung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:08 Fr 17.08.2007
Autor: rainerS

Hallo!
>  
> Ich habe gleich zwei Probleme:
>  Zum einen habe ich Funktionswerte f(x) mit einer
> Standardabweichung.
> Diese Funktionswerte (Messwerte) werden nun reziprok
> aufgetragen, also 1/f(x) gegen konstante x-Werte, diese
> Funktion ist linear , z. B. k*x+d
>  
> Wie kann ich nun die Standardabweichung "mitnehmen"?

Die Fehlerfortplanzung ist eine lineare Approximation, also Abbruch der Taylorreihe nach dem linearen Glied.
Hast du einen Messwert [mm]y= y_0\pm\Delta y[/mm] und willst [mm]z=1/y[/mm] auftragen,so entwickelst du [mm]1/y[/mm] um [mm]y_0[/mm]:
[mm]z=\bruch{1}{y} = \bruch{1}{y_0} - \bruch{1}{y_0^2}(y-y_0) + \dots \approx \bruch{1}{y_0}\left(1 \pm \bruch{\Delta y}{y_0}\right) = z_0 \pm \Delta z[/mm].
Wenn du das durch [mm]z_0[/mm] teilst, siehst du, dass der relative Fehler von z gleich dem relativen Fehler von y ist. Das ist bei Produkt- und Quotientenbildung immer so.

> Meine Anwendung der Gauss´schen Fehlerfortpflanzung liefert
> "merkwürdige" Werte, z. B.
>  f(x)=1000 [mm]\pm[/mm] 10

Das ist ein relativer Fehler von einem Prozent, also ist [mm]1/f(x) = 0.001 \pm 0.00001[/mm].

> Mein zweites, größeres Problem ist folgendes:
>  Aus z. B. acht 1/f(x)-Werten bekomme ich dann die
> entsprechende lineare Funktion, k*x+d raus, wobei k für
> mich die entsprechende interessante Größe ist. Nun möchte
> ich für die Steigung gerne eine Standardabweichung oder
> eine entsprechend andere statistische Größe angeben -> wie
> kann ich das machen? Könnte ich für deren Varianz einfach
>  
> [mm]\bruch{1}{N-1}*\summe_{i=1}^{n}(x_{i}-\overline{x})^{2}[/mm]
>
> rechnen, wobei xi mein 1/f(x)-Wert ist und [mm]\overline{x}[/mm]
> mein gefitteter und aus der Gleichung errechneter Wert
> ist...?

Schau dir mal diese []Erklärung der linearen Regression an. Die ist zwar etwas länglich, gibt aber auf der vierten Seite die Standardabweichung für Steigung und Achsenabschnitt an.

Grüße

Bezug
                
Bezug
Fehlerfortpflanzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:35 Fr 17.08.2007
Autor: Hydrazin

Vielen Dank!

Mit den Erklärungen ist´s mir total klar... Und vollkommen unverständlich, warum ich da so lange herumgedoktort habe :)

Auf jeden Fall vielen, vielen Dank & lg




Bezug
        
Bezug
Fehlerfortpflanzung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Fr 24.08.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]