matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieFehlerberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Fehlerberechnung
Fehlerberechnung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerberechnung: Tipp
Status: (Frage) beantwortet Status 
Datum: 23:04 Di 01.04.2014
Autor: rosalilablau

Aufgabe
Berrechne den Fehler:

hm= 8,15 cm
∆hm= 0,1 cm
D=150 cm
∆D= 1 cm
g= 1/100
m= 1

Bezugsformel: λ(hm,D)=  (hm∙g)/(√(D²+hm²)∙m)∙1000000

λ(hm, D) = 542,53 nm
|∂/∂hm λ(hm,D)∙∆hm|= 6,637cm
|∂/∂D λ(hm,D)∙∆D|=3,606cm
∆λ(hm,D)=|∂/∂hm λ(hm,D)∙∆hm|+|∂/∂D λ(hm,D)∙∆D|=10,243

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Wie kommt man bei dieser Aufgabe auf die 6,637cm und auf die 3,606cm ? Handelt es sich dabei um eine Partielle Ableitung? Und wie genau funktioniert die?

        
Bezug
Fehlerberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:51 Mi 02.04.2014
Autor: leduart

Hallo
das steht doch da, du leitest [mm] \lambda [/mm] nach hm ab und du leitest [mm] \lambda [/mm] nach D ab.
die Idee ist,  du gehst auf der Tangente in hm richtung das Stock [mm] \Delta [/mm] hm und schatzt so den fehler von [mm] \lambda [/mm] durch den Fehler von hm ab, dasselbe mit D dann addierst du die 2 Fehler.
Gruß leduart

Bezug
                
Bezug
Fehlerberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:26 Mi 02.04.2014
Autor: rosalilablau

Aufgabe
Wie genau leite ich das denn ab?

Ich versteh leider trotzdem nicht wie ich dabei vorgehen muss. Vielleicht können sie mir bei dem ersten Fehler sagen was ich genau machen muss?

Liebe Grüße

Bezug
                        
Bezug
Fehlerberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:34 Mi 02.04.2014
Autor: chrisno

[mm] $\lambda(h_m, [/mm] D) = [mm] \br{h_m *g*1000000}{\wurzel{D^2+h_m^2}*m}$ [/mm]
Wenn Du meinst, noch nie partiell abgeleitet zu haben:
Nenne die Variable [mm] $h_m$ [/mm] in x um. Leite wie immer nach x ab. Nenne wieder x in [mm] $h_m$ [/mm] um.
Entsprechend für D.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]