matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenFehlerabschätzung von Taylorp.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Fehlerabschätzung von Taylorp.
Fehlerabschätzung von Taylorp. < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerabschätzung von Taylorp.: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:19 So 07.06.2015
Autor: Jonas123

Aufgabe
Es sei [mm] $f:(0,\infty )^2\rightarrow [/mm] R$ mit [mm] $f(x,y)=x^y$. [/mm]
a) Bestimme alle partiellen Ableitungen von f bis zur Ordnung 3 (einschließlich).
b) Verwende den Satz von Taylor mit Entwicklungspunkt (1,1) um eine Nährung für [mm] $1,05^{1,02}$ [/mm] zu berechnen. Verwende hierbei die Ableitungen bis zur zweiten Ordnung.
Schätze anschließend unter Verwendung der Ableitungen dritter Ordnung den Fehler ab und zeige, dass er kleiner als [mm] $10^{-4}$ [/mm] ist.

Hallo zusammen,

habe bei dieser Aufgabe wohl eher ein kleines Problem.

Die partiellen Ableitungen zu bestimmen ist ja kein Problem und geht auch relativ schnell dank dem Satz von Schwarz.
Das Taylorpolynom kann ich auch noch gut bestimmen und ergibt ${ T [mm] }_{ 2 }(f,(x,y),(1,1))=1-y+xy$ [/mm]
Als Näherung für [mm] $1,05^{1,02}$ [/mm] erhalte ich ${ T [mm] }_{ 2 }(f,(1,05,1,02),(1,1))=1,051$ [/mm] (einfach nur eingesetzt)
(Ihr brauchst das nicht kontrollieren, das haben schon andere gemacht: https://matheraum.de/read?t=49028&v=t )

Mein eigentliches Problem bei dieser Aufgabe ist die Fehlerabschätzung mit der dritten Ableitung.
Ich kann schon einen Fehler angeben: ${ 1,05 [mm] }^{ 1,02 }-1,051=2,509\cdot [/mm] { 10 [mm] }^{ -5 }$ [/mm] und dieser ist auch kleiner als gefordert, jedoch habe ich keine Idee wie ich das mit der dritten Ableitung berechnen soll.

In unserem Skript zur Vorlesung haben wir nur die allgemeine Formel für das Taylorpolynom gegeben, jedoch keine Formel für den Fehler.

Wäre nett wenn mir das jemand kurz und präzise erklären könnte wie ich da vorgehen muss. Ich denke mal da wird es auch eine Formel geben.

Vielen Dank schon mal an alle, die sich die Zeit nehmen.

Jonas

        
Bezug
Fehlerabschätzung von Taylorp.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 So 07.06.2015
Autor: MathePower

Hallo Jonas123,

> Es sei [mm]f:(0,\infty )^2\rightarrow R[/mm] mit [mm]f(x,y)=x^y[/mm].
>  a) Bestimme alle partiellen Ableitungen von f bis zur
> Ordnung 3 (einschließlich).
>  b) Verwende den Satz von Taylor mit Entwicklungspunkt
> (1,1) um eine Nährung für [mm]1,05^{1,02}[/mm] zu berechnen.
> Verwende hierbei die Ableitungen bis zur zweiten Ordnung.
> Schätze anschließend unter Verwendung der Ableitungen
> dritter Ordnung den Fehler ab und zeige, dass er kleiner
> als [mm]10^{-4}[/mm] ist.
>  Hallo zusammen,
>  
> habe bei dieser Aufgabe wohl eher ein kleines Problem.
>  
> Die partiellen Ableitungen zu bestimmen ist ja kein Problem
> und geht auch relativ schnell dank dem Satz von Schwarz.
>  Das Taylorpolynom kann ich auch noch gut bestimmen und
> ergibt [mm]{ T }_{ 2 }(f,(x,y),(1,1))=1-y+xy[/mm]
>  Als Näherung
> für [mm]1,05^{1,02}[/mm] erhalte ich [mm]{ T }_{ 2 }(f,(1,05,1,02),(1,1))=1,051[/mm]
> (einfach nur eingesetzt)
>  (Ihr brauchst das nicht kontrollieren, das haben schon
> andere gemacht: https://matheraum.de/read?t=49028&v=t
> )
>  
> Mein eigentliches Problem bei dieser Aufgabe ist die
> Fehlerabschätzung mit der dritten Ableitung.
> Ich kann schon einen Fehler angeben: [mm]{ 1,05 }^{ 1,02 }-1,051=2,509\cdot { 10 }^{ -5 }[/mm]
> und dieser ist auch kleiner als gefordert, jedoch habe ich
> keine Idee wie ich das mit der dritten Ableitung berechnen
> soll.
>  
> In unserem Skript zur Vorlesung haben wir nur die
> allgemeine Formel für das Taylorpolynom gegeben, jedoch
> keine Formel für den Fehler.
>  
> Wäre nett wenn mir das jemand kurz und präzise erklären
> könnte wie ich da vorgehen muss. Ich denke mal da wird es
> auch eine Formel geben.
>  


Siehe z.B []Taylor-Formel - Mehrdimensionale Restgliedformeln


> Vielen Dank schon mal an alle, die sich die Zeit nehmen.
>  
> Jonas


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]